á¨é§àÍ¡ÊÒÃäÁè¤Ãº¶éǹ, äÁèµÃ§¡Ñºª×èÍàÃ×èͧ ËÃ×ÍÁÕ¢éͼԴ¾ÅÒ´à¡ÕèÂǡѺàÍ¡ÊÒà µÔ´µèÍ·Õè¹Õè ==>
ËÒ¡äÁèÁÕÍÕàÁżÙéÃѺãËé¡ÃÍ¡ thailis-noc@uni.net.th µÔ´µèÍà¨éÒ˹éÒ·Õèà¨éҢͧàÍ¡ÊÒà ¡Ã³ÕàÍ¡ÊÒÃäÁè¤ÃºËÃ×ÍäÁèµÃ§
Table './tdc/tbl_dc_meta_control_57' is marked as crashed and last (automatic?) repair failed

Genotypic variation of yield and functional compounds synthesis among purple rice varieties in responses to Nitrogen and Zinc fertilizers
¤ÇÒÁá»Ã»Ãǹ·Ò§¾Ñ¹¸Ø¡ÃÃÁ¢Í§¼Å¼ÅÔµáÅСÒÃÊѧà¤ÃÒÐËìÊÒûÃСͺàªÔ§Ë¹éÒ·Õèã¹¢éÒÇ¡èӾѹ¸ØìµèÒ§æ µèÍ¡ÒõͺʹͧµèÍ»ØëÂä¹âµÃਹáÅÐÊѧ¡ÐÊÕ

LCSH: Purple rice -- Varieties
LCSH: Purple rice -- Breeding
LCSH: Nitrogen
LCSH: Zinc
Abstract: Purple rice has emerged as a valuable source of nutrition and essential micronutrients, including iron and zinc. This type of rice is primarily identified by its black or purple pericarp color varieties. Research suggests that the compounds found in purple rice may serve as pro-apoptotic, anti-proliferative, and anti-metastatic agents in breast cancer cells, and their antioxidant properties can help combat chronic disorders linked to oxidative stress. The popularity of purple rice among consumers has led to increased demand to develop high grain yield and functional compounds. Breeding for purple rice varieties with high grain yield and functional compounds is one potentially way to solve the problem, but it may be time and budget consuming. Nutrient management in rice crop cultivation could be the solution while breeding for new purple rice verities is undergo, especially for nitrogen (N) and zinc (Zn), the common practice among farmers. However, there is limited information on how N and Zn fertilization interact to affect yield, seed development and the synthesis of functional compounds in different purple rice varieties. Therefore, this thesis aims 1) to investigate the genotypic variation of grain yield and functional compounds among different purple rice varieties, 2) to examine the effects of N and Zn fertilizer application at different growth stages of purple rice varieties on yield and functional compounds synthesis, and 3) to investigate the effects of N and Zn fertilizer application on grain yield and anthocyanin synthesis during seed development of purple rice varieties. The grain yield and functional compound synthesis as affected by N and Zn applications among twelve purple rice varieties (KH-CMU, KPY, KNN, KWS, KDK, KJ-CMU 107, HMN, RBR, BL2, BL3, CMU-K2, and CMU-K4) was conducted under two N rates: no nitrogen application (N0) and 120 kg/ha (N120), and three Zn application methods, including no Zn (Zn0), soil Zn application at 50 kg ZnSO ha (ZnS), and foliar application of 0.5% ZnSO (ZnF) at a rate of 800 L/ha two times during the flowering stage and 10 days after flowering. Applying Zn with different methods between ZnF and ZnS under no N and adequate N application at 120 kg/ha had affected grain yield and functional compounds differently among the purple rice varieties from the traditional and new improved varieties. At N120, applying ZnS improved the highest grain yield, ranging from 5.6% to 47.6% in the traditional varieties and from 7.5% to 40.4% in the improved varieties compared to ZnF and Zn0. The increased grain functional compounds (anthocyanin, phenol, and DPPH activity) in purple rice were strongly enhanced under N120 with ZnF compared to ZnS application. These increased anthocyanin concentrations ranged from 46.6 to 68.6 mg/100 g and 22.7 to 100.4 mg/100 g; grain phenol concentration ranged from 180.4 to 424.1 mg gallic acid/100 g and 220.6 to 413.1 mg gallic acid/100 g; and grain DPPH activity ranged from 855.6 to 1562.0 mg Trolox/100 g and 1047.3 to 3818.4 mg Trolox/100 g, respectively, indicating the efficiency of ZnF application compared to ZnS under N0 and N120 in the traditional and improved purple rice varieties. The application of ZnF also significantly increased grain Zn concentration under N0 and N120. In the traditional varieties increased grain Zn concentrations ranging from 24.1 to 47.1 mg/kg and 38.1 to 49.2 mg/kg among improved varieties, compared with Zn0 and ZnS with average Zn concentrations of 19.3 to 34.1 mg/kg and 21.5 to 35.4 mg/kg among traditional varieties and from 28.8 to 38.7 mg/kg and 29.9 to 40.8 mg/kg among improved varieties, indicating that applying ZnF had the highest efficiency for grain Zn concentration compared to ZnS at all N applications. The applications of ZnF and ZnS under no N and N120 have affected grain N concentration differently among the purple rice varieties. The influence of N and Zn fertilizers affected grain yield and grain functional compounds among two purple rice varieties (KDK; Kam Doi Saket, a traditional improved rice; and CMU-K4; Kam Chao Morchor K4, a modern improved rice) were grown under two rates of N at 120 kg/ha (N120) and no nitrogen application (N0), along with four Zn application methods: 1) no Zn fertilizer application (Zn0), 2) soil Zn application at the rate of 50 kg/ha (ZnS), 3) foliar Zn application at 0.5% ZnSO4 at the rate of 800 L/ha (ZnF), and 4) soil Zn application at the rate of 50 kg/ha + foliar Zn application at 0.5% ZnSO4 at the rate of 800 L/ha (ZnS+ZnF), three times foliar Zn at the tillering stage, flowering stage and 10 days after flowering. The grain yield of KDK and CMU-K4 rice varieties at N120 was significantly increased compared to N0. Under N120, grain anthocyanin concentration increased to a height of 83.0 mg/100g with ZnF application compared to Zn0, ZnS, and ZnS+ZnF, which had average grain anthocyanin concentrations of 55.8, 58.7, and 63.6 mg/100 g, respectively. The grain anthocyanin concentration was not different between ZnS and ZnS+ZnF applications had an average of 61.2 mg/100 g in the KDK rice variety. In CMU-K4 rice variety under N120, the highest anthocyanin concentration was found with ZnF and ZnS+ZnF, averaging 89.3 mg/100g, compared to Zn0 and ZnS, which had anthocyanin concentrations of 78.2 mg/100g and 65.8 mg/100g, respectively. Similarly, grain phenol concentration and grain DPPH activity were substantially increased under N120 by ZnF and ZnS+ZnF applications in both varieties. The Zn concentration in brown rice was increased by foliar Zn and soil Zn+foliar Zn applications in both rice varieties. The grain concentration of KDK rice varieties increased by 4.0-5.0%, while it increased by 16-17% in CMU-K4 rice varieties. There was a positive correlation between grain Zn and N concentration in CMU-K4 varieties (r=0.83**), indicating the relationship of the role mechanism between N and Zn for the production and functional compounds synthesis in purple rice. The grain yield and functional compounds synthesis during seed development in response to N and Zn fertilizer application among three purple rice varieties (KDK, KJ CMU 107, and CMU-K4) was conducted under two rates of N at 120 kg/ha (N120) and no nitrogen application (N0), along with three Zn application methods: 1) no Zn fertilizer application (Zn0), 2) soil Zn application at the rate of 50 kg/ha (ZnS), 3) foliar Zn application at 0.5% ZnSO at the rate of 800 L/ha (ZnF), foliar Zn was applied two times at the flowering stage and 10 days after flowering. The rice grain samples were collected randomly at 7, 14, 21, 28, and 35 days after the flowering day. The grain yield and yield components responded differently to N rate, and Zn application method among the varieties. Grain yield was increased at an average of 4.4 to 5.6 kg/ha by applying N120 with ZnS, compared with N0 and Zn0 had an average yield of 2.9 to 3.9 kg/ha among the varieties. The variation of seed appearance during development among the purple rice varieties, KDK, KJ CMU 107, and CMU-K4, was observed in this study. The color continued to change in purple rice from light to dark purple, from the milky stage at 14 DAF to the mature stage at 35 DAF. The grain anthocyanin concentration (35 DAF) of all varieties was increased, ranging from 72.4 to 194.1 mg/100 g under N120 with ZnF, compared with Zn0 and ZnS, ranging from 31.7 to 125.4 mg/100 g and 37.4 to 133.47 mg/100 g, respectively. Grain phenolic concentrations was increased, ranging from 269.0 to 413.9 mg gallic acid/100 g by applying N120 with ZnF, compared to Zn0 and ZnS had average phenol concentrations of 266.3 to 383.9 mg gallic acid/100 g and 268.8 to 385.8 mg gallic acid/100 g, respectively and grain DPPH activity increased of 1980.1 to 3859.6 mg Trolox/100 g under N120 with ZnF, compared with Zn0 and ZnS was average of 1247.4 to 3763.0 and 1247.4 to 3823.8 mg Trolox/100 g, respectively. Therefore, enhancing grain yield and functional compounds in purple rice varieties could be managed through N rate and Zn methods for the specific varieties with the selection of the appropriate stage of seed development for the maximum benefit for farmers and consumers. In conclusion, this study demonstrated significant variation in grain yield and quality (DPPH activity, grain anthocyanin, phenolic compounds, and N and Zn concentrations) among the purple rice varieties. The application of N in combination with ZnS improved grain yield, while the synthesis of functional compounds was enhanced with the application of N and ZnF. Improved purple rice varieties showed higher responsiveness to N and Zn application in terms of yield and functional compound synthesis compared to traditional varieties. Therefore, optimizing both yield and quality in purple rice requires careful consideration of the appropriate combined application of N and Zn fertilizers tailored to specific rice varieties, especially at 14 days after flowering as it was found the highest concentration of the compounds, to maximize benefits for farmers and consumers.
Abstract: ¢éÒÇ¡èÓà»ç¹¢éÒÇ·ÕèÁÕàÂ×èÍËØéÁàÁÅç´à»ç¹ÊÕÁèǧ à»ç¹áËÅ觢ͧ¨ØÅ¸ÒµØÍÒËÒ÷ÕèÊӤѭµèÍâÀª¹Ò¡ÒâͧÃèÒ§¡Ò àªè¹ ¸ÒµØàËÅç¡áÅÐÊѧ¡ÐÊÕ ·ÕèÁջѭËÒ¡ÒâҴ㹻ÃЪҡÃâÅ¡à»ç¹¨Ó¹Ç¹ÁÒ¡ ¹Í¡¨Ò¡¹Õé Âѧà»ç¹áËÅ觢ͧÊÒûÃСͺàªÔ§Ë¹éÒ·Õè·ÕèÊӤѭ㹡Òûéͧ¡Ñ¹¡ÒÃâäÊӤѭµèÒ§ æ ËÅÒª¹Ô´ â´Â·Ó˹éÒ·Õèà»ç¹µÑÇ¡ÃеØé¹ Íо;ⷫÔÊ ÂѺÂÑé§¡ÒÃáºè§µÑǢͧà«ÅÅì ÂѺÂÑé§¡ÒÃá¾Ãè¡ÃШÒ¢ͧà«ÅÅìÁÐàÃç§àµéÒ¹Á áÅФسÊÁºÑµÔµéҹ͹ØÁÙÅÍÔÊÃТͧÊÒÃàËÅèÒ¹ÕéÊÒÁÒöªèǵéÒ¹âäàÃ×éÍÃѧ·Õèà¡ÕèÂÇ¢éͧ¡Ñº¤ÇÒÁà¤ÃÕ´¨Ò¡¡Ãкǹ¡ÒÃÍÍ¡«Ôപѹä´é ¢éÒÇ¡èÓ«Öè§à»ç¹¡ÅØèÁ¢éÒÇÊÕ¨Ö§ä´éÃѺ¤ÇÒÁ¹ÔÂÁÊÙ§ã¹¡ÅØèÁ¼ÙéºÃÔâÀ¤·ÕèÃÑ¡ÊØ¢ÀÒ¾ áÅÐÁÕ¤ÇÒÁµéͧ¡Ò÷Õèà¾ÔèÁÁÒ¡¢Öé¹ ¡ÒûÃѺ»Ãا¾Ñ¹¸Øì¢éÒÇ¡èÓãËéÁռżÅÔµáÅÐÊÒûÃСͺàªÔ§Ë¹éÒ·ÕèÊÙ§à»ç¹·Ò§Ë¹Öè§·ÕèÊÒÁÒöÊÃéÒ§·Ò§àÅ×Í¡ãËéà¡ÉµÃ¡ÃáÅмÙéºÃÔâÀ¤ä´é áµèÍÒ¨¨Óà»ç¹µéͧãªé§º»ÃÐÁÒ³áÅÐÃÐÂÐàÇÅÒÂÒǹҹ ¡ÒèѴ¡ÒøҵØÍÒËÒè֧à»ç¹ÍÕ¡ÇÔ¸Õ¡ÒÃ˹Öè§·ÕèÊÒÁÒö·Óä´éÍÂèÒ§§èÒÂáÅÐÃÇ´àÃçÇ ã¹¢³Ð·Õè¡ÓÅѧÁÕ¡ÒôÓà¹Ô¹§Ò¹ã¹àÃ×èͧ¡ÒûÃѺ»Ãا¾Ñ¹¸Øì áµè¾ºÇèÒÁÕ¡ÒÃÈÖ¡ÉÒáÅÐÇԨѹéÍÂÁÒ¡à¡ÕèÂǡѺ¡Òõͺʹͧ¢Í§¾Ñ¹¸Øì¢éÒÇ¡èÓµèÍ¡ÒèѴ¡ÒøҵØÍÒËÒÃẺµèÒ§ æ ·ÕèÁռŵèͼżÅÔµáÅСÒÃÊÃéÒ§ÊÒÃÊӤѭ·Õèà»ç¹»ÃÐ⪹ìµèÍâÀª¹Ò¡Òâͧ¼ÙéºÃÔâÀ¤ â´Â੾ÒÐÍÂèÒ§ÂÔè§ ¡ÒèѴ¡ÒÃä¹âµÃਹ (N) áÅÐÊѧ¡ÐÊÕ (Zn) µèͼżÅÔµáÅСÒÃÊѧà¤ÃÒÐËìÊÒûÃСͺàªÔ§Ë¹éÒ·Õèã¹¢³Ð·ÕèÁÕ¡ÒþѲ¹ÒàÁÅç´ã¹¢éÒÇ¡èӾѹ¸ØìµèÒ§ æ ´Ñ§¹Ñé¹ §Ò¹ÇԨѹÕé¨Ö§ÁÕÇѵ¶Ø»ÃÐʧ¤ìà¾×èÍ 1. »ÃÐàÁÔ¹¤ÇÒÁá»Ã»Ãǹ¢Í§¼Å¼ÅÔµáÅСÒÃÊѧà¤ÃÒÐËìÊÒûÃСͺàªÔ§Ë¹éÒ·Õèã¹¢éÒÇ¡èӾѹ¸ØìµèÒ§ æ 2. ÇÑ´¼Å¢Í§¡ÒèѴ¡ÒûØëÂä¹âµÃਹáÅÐÊѧ¡ÐÊÕã¹ÃÐÂСÒÃà¨ÃԭᵡµèÒ§¡Ñ¹µèͼżÅÔµáÅСÒÃÊѧà¤ÃÒÐËìÊÒûÃСͺàªÔ§Ë¹éÒ·Õèã¹¢éÒÇ¡èÓ áÅÐ 3. »ÃÐàÁÔ¹¼Å¢Í§¡ÒèѴ¡ÒûØëÂä¹âµÃਹáÅÐÊѧ¡ÐÊÕµèͼżÅÔµáÅСÒÃÊѧà¤ÃÒÐËìÊÒûÃСͺàªÔ§Ë¹éÒ·Õèã¹ÃÐËÇèÒ§¡ÒþѲ¹Ò¢Í§àÁÅç´¢éÒÇ¡èÓ ¨Ò¡¡ÒûÃÐàÁÔ¹¼Å¼ÅÔµáÅСÒÃÊѧà¤ÃÒÐËìÊÒûÃСͺàªÔ§Ë¹éÒ·Õè´éÇ¡ÒèѴ¡ÒûØëÂä¹âµÃਹáÅÐÊѧ¡ÐÊÕã¹¢éÒÇ¡èӾѹ¸Øì¾×é¹àÁ×ͧáÅоѹ¸Øì»ÃѺ»ÃاãËÁè¨Ó¹Ç¹ 12 ÊÒ¾ѹ¸Øì (KH-CMU, KPY, KNN, KWS, KDK, KJ-CMU 107, HMN, RBR, BL2, BL3, CMU-K2 áÅÐ CMU-K4) â´ÂãÊè»ØëÂä¹âµÃਹ 2 ÃдѺ ¤×Í äÁèãÊè»ØëÂä¹âµÃਹ (N0) áÅÐãÊè»ØëÂä¹âµÃਹã¹ÍѵÃÒ 120 ¡ÔâÅ¡ÃÑÁ/àΡµÒÃì (N120) ÃèÇÁ¡ÑºÇÔ¸Õ¡ÒèѴ¡ÒûØëÂÊѧ¡ÐÊÕ 3 ÇÔ¸Õ¡Òà ä´éá¡è äÁèãÊè»ØëÂÊѧ¡ÐÊÕ (Zn0), ãÊè»ØëÂÊѧ¡ÐÊÕ·Ò§´Ô¹ 50 ¡ÔâÅ¡ÃÑÁ ZnSO àΡµÒÃì (ZnS) áÅСÒþ蹻ØëÂÊѧ¡ÐÊշҧ㺠(ZnF) 0.5% ZnSO ã¹ÍѵÃÒ 800 ÅÔµÃ/àΡµÒÃì ¨Ó¹Ç¹ 2 ¤ÃÑé§ ã¹ÃÐÂÐÍÍ¡´Í¡áÅÐÃÐÂÐ 10 ÇѹËÅѧÍÍ¡´Í¡ ¾ºÇèҼżÅÔµáÅÐÊÒûÃСͺàªÔ§Ë¹éÒ·Õèã¹¢éÒÇ¡èÓ 12 ÊÒ¾ѹ¸ØìÁÕ¤ÇÒÁᵡµèÒ§¡Ñ¹¨Ò¡¼Å¢Í§¡ÒèѴ¡ÒûØëÂä¹âµÃਹáÅÐÊѧ¡ÐÊÕ·ÕèᵡµèÒ§¡Ñ¹ ¾ºÇèÒàÁ×èÍ»ÅÙ¡¢éÒÇ¡èÓ·ÕèÃдѺ N120 ¡ÒÃãË黨ë ZnS ÊÒÁÒöà¾ÔèÁ¼Å¼ÅÔµ¢éÒÇä´éÁÒ¡·ÕèÊØ´ ÍÂÙè㹪èǧ 5.6 - 47.6 à»ÍÃìà«ç¹µì 㹾ѹ¸Øì¾×é¹àÁ×ͧ áÅÐ 7.5 - 40.4 à»ÍÃìà«ç¹µì 㹾ѹ¸Øì»ÃѺ»Ãا àÁ×èÍà·Õº¡ÑºãË黨ë ZnF áÅÐ Zn0 ã¹ÃдѺ¡ÒÃãÊèä¹âµÃਹà´ÕÂǡѹ áÅоºÇèÒÊÒûÃСͺàªÔ§Ë¹éÒ·Õè (á͹â·ä«ÂÒ¹Ô¹, ¿Õ¹ÍÅ áÅÐ DPPH activity) ã¹àÁÅç´¢éÒÇ¡èÓà¾ÔèÁ¢Öé¹ÁÒ¡·ÕèÊØ´ÀÒÂãµé¡ÒûÅÙ¡·Õè N120 ÃèÇÁ¡Ñº¡ÒèѴ¡ÒÃÊѧ¡ÐÊÕẺ ZnF àÁ×èÍà·Õº¡Ñº¡ÒÃãË黨ëÂÊѧ¡ÐÊÕẺ ZnS áÅÐ Zn0 â´Â¤ÇÒÁà¢éÁ¢é¹¢Í§á͹â·ä«ÂÒ¹Ô¹ÍÂÙè㹪èǧ 46.6 - 68.6 ÁÔÅÅÔ¡ÃÑÁ/100 ¡ÃÑÁ áÅÐ 22.7 - 100.4 ÁÔÅÅÔ¡ÃÑÁ/100 ¡ÃÑÁ ¤ÇÒÁà¢éÁ¢é¹¢Í§¿Õ¹ÍÅã¹àÁÅç´¢éÒÇÍÂÙè㹪èǧ 180.4 - 424.1 ÁÔÅÅÔ¡ÃÑÁ gallic acid / 100 ¡ÃÑÁ áÅÐ 220.6 ¶Ö§ 413.1 ÁÔÅÅÔ¡ÃÑÁ gallic acid / 100 ¡ÃÑÁ áÅСԨ¡ÃÃÁ DPPH radical scavenging activity (DPPH) ã¹àÁÅç´¢éÒÇÍÂÙè㹪èǧ 855.6 - 1,562.0 ÁÔÅÅÔ¡ÃÑÁ¢Í§ Trolox / 100 ¡ÃÑÁ áÅÐ 1,047.3 - 3,818.4 ÁÔÅÅÔ¡ÃÑÁ¢Í§ Trolox / 100 ¡ÃÑÁ µÒÁÅӴѺ áÊ´§ãËéàËç¹¶Ö§»ÃÐÊÔ·¸ÔÀÒ¾¢Í§¡ÒÃãªé»ØëÂÊѧ¡ÐÊÕẺ ZnF àÁ×èÍà»ÃÕºà·Õº¡Ñºáºº ZnS áÅÐ Zn0 ·Õè»ÅÙ¡ÀÒÂãµé N0 áÅÐ N120 ã¹¢éÒÇ¡èӾѹ¸Øì¾×é¹àÁ×ͧáÅТéÒÇ¡èӾѹ¸Øì»ÃѺ»Ãا㹡ÒÃÊÃéÒ§ÊÒûÃСͺàªÔ§Ë¹éÒ·Õ誹ԴµèÒ§ æ ÊÓËÃѺ¡ÒèѴ¡ÒûØëÂÊѧ¡ÐÊÕẺ ZnF ¾ºÇèÒ·ÓãËé¤ÇÒÁà¢éÁ¢é¹¢Í§Êѧ¡ÐÊÕã¹àÁÅç´¢éÒÇà¾ÔèÁ¢Öé¹ ·Ñé§ÀÒÂãµé¡ÒûÅ١Ẻ N0 áÅÐ N120 â´Âã¹¢éÒÇ¡èӾѹ¸Øì¾×é¹àÁ×ͧÁÕ¤ÇÒÁà¢éÁ¢é¹¢Í§Êѧ¡ÐÊÕã¹àÁÅç´¢éÒÇ㹪èǧ 24.1 - 47.1 ÁÔÅÅÔ¡ÃÑÁ/¡ÔâÅ¡ÃÑÁ áÅÐ 38.1 - 49.2 ÁÔÅÅÔ¡ÃÑÁ/¡ÔâÅ¡ÃÑÁ ã¹¢éÒǾѹ¸Øì»ÃѺ»Ãا à·Õº¡Ñº Zn0 áÅÐ ZnS ·ÕèÁÕ¤ÇÒÁà¢éÁ¢é¹Êѧ¡ÐÊÕà©ÅÕè 19.3 – 34.1 ÁÔÅÅÔ¡ÃÑÁ/¡ÔâÅ¡ÃÑÁ áÅÐ 21.5 – 35.4 ÁÔÅÅÔ¡ÃÑÁ/¡ÔâÅ¡ÃÑÁã¹¢éÒÇ¡èӾѹ¸Øì¾×é¹àÁ×ͧ áÅÐ 28.8 – 38.7 ÁÔÅÅÔ¡ÃÑÁ/¡ÔâÅ¡ÃÑÁ áÅÐ 29.9 – 40.8 ÁÔÅÅÔ¡ÃÑÁ/¡ÔâÅ¡ÃÑÁ 㹾ѹ¸Øì»ÃѺ»Ãا áÊ´§ãËéàËç¹ÇèÒ¡ÒèѴ¡ÒÃÊѧ¡ÐÊÕẺ ZnF ÁÕ»ÃÐÊÔ·¸ÔÀÒ¾ÊÙ§ÊØ´ã¹¡ÒÃà¾ÔèÁ¤ÇÒÁà¢éÁ¢é¹¢Í§Êѧ¡ÐÊÕã¹àÁÅç´¢éÒÇàÁ×èÍà·Õº¡Ñº¡ÒèѴ¡ÒÃẺ ZnS ÀÒÂãµé¡ÒèѴ¡ÒÃä¹âµÃਹ·Ñé§ÊͧẺÿ ¹Í¡¨Ò¡¹Õé¡ÒèѴ¡ÒÃÊѧ¡ÐÊÕẺ ZnF áÅÐ ZnS ÀÒÂãµé N0 áÅÐ N120 ÁռŵèͤÇÒÁà¢éÁ¢é¹¢Í§ä¹âµÃਹã¹àÁÅç´¢éÒÇᵡµèÒ§¡Ñ¹ÃÐËÇèÒ§¾Ñ¹¸Øì¢éÒÇ¡èÓ ¡ÒÃÈÖ¡ÉÒÍÔ·¸Ô¾Å¢Í§¡ÒÃãÊè»ØëÂä¹âµÃਹáÅÐÊѧ¡ÐÊÕ·ÕèÁռŵèͼżÅÔµáÅСÒÃÊѧà¤ÃÒÐËìÊÒûÃСͺàªÔ§Ë¹éÒ·Õè¢Í§¢éÒÇ¡èÓ 2 ÊÒ¾ѹ¸Øì (KDK; ¡èÓ´ÍÂÊÐà¡ç´, ¾Ñ¹¸Øì¾×é¹àÁ×ͧ»ÃѺ»Ãا; áÅТéÒǾѹ¸Øì CMU-K4; ¡èÓà¨éÒ Áª K4, ¾Ñ¹¸Øì»ÃѺ»ÃاÊÁÑÂãËÁè) â´Â»ÅÙ¡¢éÒÇ¡èÓ·Ñé§ 2 ¾Ñ¹¸ØìÀÒÂãµé¡ÒÃãÊè»ØëÂä¹âµÃਹ 2 ÃдѺ ä´éá¡è ä¹âµÃਹ 120 ¡ÔâÅ¡ÃÑÁ/àΡµÒÃì (N120) áÅÐäÁèãÊè»ØëÂä¹âµÃਹ (N0) ÃèÇÁ¡ÑºÇÔ¸Õ¡ÒèѴ¡ÒûØëÂÊѧ¡ÐÊÕ 4 ÇÔ¸Õ ¤×Í 1) äÁèãÊè»ØëÂÊѧ¡ÐÊÕ (Zn0) 2) ãÊè»ØëÂÊѧ¡ÐÊÕ·Ò§´Ô¹ÍѵÃÒ 50 ¡ÔâÅ¡ÃÑÁ ZnSO4/àΡµÒÃì (ZnS) 3) ¡ÒÃãÊèÊѧ¡ÐÊÕ·Ò§ãºÍѵÃÒ 0.5% ZnSO ã¹ÍѵÃÒ 800 ÅÔµÃ/àΡµÒÃì (ZnF) áÅÐ 4) ãÊèÊѧ¡ÐÊÕã¹´Ô¹ÍѵÃÒ 50 ¡¡./àΡµÒÃì + ãÊèÊѧ¡ÐÊÕ·Ò§ãºÍѵÃÒ 0.5% ZnSO ã¹ÍѵÃÒ 800 ÅÔµÃ/àΡµÒÃì (ZnS+ZnF) â´Â¾è¹»ØëÂÊѧ¡ÐÊշҧ㺠3 ÃÐÂÐ ¤×Í ÃÐÂÐᵡ¡Í ÃÐÂÐÍÍ¡´Í¡ áÅÐ 10 ÇѹËÅѧÍÍ¡´Í¡ ¾ºÇèҼżÅÔµ¢Í§¢éÒǾѹ¸Øì KDK áÅÐ CMU-K4 ·ÕèãÊè»ØëÂä¹âµÃਹÍѵÃÒ 120 ¡ÔâÅ¡ÃÑÁ/àΡµÒÃì à¾ÔèÁ¢Öé¹ÍÂèÒ§ÁÕ¹ÑÂÊӤѭàÁ×èÍà·Õº¡Ñº¡ÒÃäÁèãÊè»ØëÂä¹âµÃਹ ÀÒÂãµé¡ÒûÅÙ¡ã¹ÊÀÒ¾ N120 ¤ÇÒÁà¢éÁ¢é¹¢Í§á͹â·ä«ÂÒ¹Ô¹ã¹àÁÅç´à¾ÔèÁ¢Öé¹ÊÙ§ÊØ´·Õè 83.0 ÁÔÅÅÔ¡ÃÑÁ/100 ¡ÃÑÁ â´Â¡ÒÃãªé ZnF àÁ×èÍà·Õº¡Ñº Zn0, ZnS áÅÐ ZnS+ZnF «Öè§ÁÕ»ÃÔÁÒ³á͹â·ä«ÂÒ¹Ô¹ 55.8, 58.7 áÅÐ 63.6 ÁÔÅÅÔ¡ÃÑÁ/100 ¡ÃÑÁ µÒÁÅӴѺ ã¹¢³Ð·Õè¤ÇÒÁà¢éÁ¢é¹¢Í§á͹â·ä«ÂÒ¹Ô¹ã¹àÁÅç´äÁèÁÕ¤ÇÒÁᵡµèÒ§¡Ñ¹ÃÐËÇèÒ§ ZnS áÅÐ ZnS+ZnF â´ÂÁÕ¤èÒà©ÅÕè 61.2 ÁÔÅÅÔ¡ÃÑÁ/100 ¡ÃÑÁ ã¹¢éÒǾѹ¸Øì KDK áÅÐã¹¢éÒǾѹ¸Øì CMU-K4 ÀÒÂãµé N120 ¾ºÇèÒ¤ÇÒÁà¢éÁ¢é¹¢Í§á͹â·ä«ÂÒ¹Ô¹¢Í§àÁÅ紾ת·Õèà¾ÔèÁ¢Öé¹ÊÙ§ÊØ´¤×Í ZnF áÅÐ ZnS+ZnF â´ÂÁÕ¤èÒà©ÅÕè 89.3 ÁÔÅÅÔ¡ÃÑÁ/100 ¡ÃÑÁ àÁ×èÍà·Õº¡Ñº Zn0 áÅÐ ZnS «Öè§ÁÕ»ÃÔÁÒ³á͹â·ä«ÂÒ¹Ô¹ 78.2 ÁÔÅÅÔ¡ÃÑÁ/100 ¡ÃÑÁ áÅÐ 65.8 ÁÔÅÅÔ¡ÃÑÁ/100 ¡ÃÑÁ µÒÁÅӴѺ 㹷ӹͧà´ÕÂǡѹ ¤ÇÒÁà¢éÁ¢é¹¢Í§¿Õ¹ÍÅ áÅÐ DPPH ã¹àÁÅç´¢éÒÇà¾ÔèÁ¢Öé¹ÍÂèÒ§ÁÕ¹ÑÂÊӤѭÀÒÂãµé¡ÒûÅÙ¡ N120 ÃèÇÁ¡Ñº¡ÒÃãªé»Øë ZnF áÅÐ ZnS+ZnF ã¹·Ñé§Êͧ¾Ñ¹¸Øì ¤ÇÒÁà¢éÁ¢é¹¢Í§Êѧ¡ÐÊÕã¹¢éÒÇ¡Åéͧà¾ÔèÁ¢Ö鹨ҡ¡ÒèѴ¡ÒÃÊѧ¡ÐÊÕẺ ZnF áÅÐ ZnS+ZnF ·Ñé§Êͧ¾Ñ¹¸Øì â´Â¤ÇÒÁà¢éÁ¢é¹ã¹àÁÅç´¢éÒǾѹ¸Øì KDK à¾ÔèÁ¢Öé¹ 4.0 – 5.0 à»ÍÃìà«ç¹µì ã¹¢³Ð·Õè¢éÒǾѹ¸Øì CMU-K4 à¾ÔèÁ¢Öé¹ 16 – 17 à»ÍÃìà«ç¹µì àÁ×èÍà·Õº¨Ò¡¡ÒÃäÁèãÊèÊѧ¡ÐÊÕ ¡Ò÷´ÅͧÂѧªÕéãËéàËç¹ÇèÒÁÕ¡ÒõͺʹͧµèͤÇÒÁà¢éÁ¢é¹¢Í§ä¹âµÃਹã¹àÁÅç´¢éÒÇÊÙ§µèÍ¡ÒèѴ¡ÒûØëÂä¹âµÃਹáÅÐÊѧ¡ÐÊÕã¹¢éÒǾѹ¸Øì CMU-K4 àÁ×èÍà»ÃÕºà·Õº¡Ñº¢éÒǾѹ¸Øì KDK ¹Í¡¨Ò¡¹ÕéÂѧ¾º¤ÇÒÁÊÑÁ¾Ñ¹¸ìàªÔ§ºÇ¡ÃÐËÇèÒ§¤ÇÒÁà¢éÁ¢é¹¢Í§Êѧ¡ÐÊÕáÅÐä¹âµÃਹã¹àÁÅç´¢éÒǾѹ¸Øì K4 (r=0.83**) ºè§ªÕé¶Ö§¡Åä¡ã¹¡Ò÷ӧҹ·ÕèÊÑÁ¾Ñ¹¸ìã¹·Ò§Êè§àÊÃÔÁ¡Ñ¹ÃÐËÇèÒ§ä¹âµÃਹáÅÐÊѧ¡ÐÊÕ㹺·¤ÇÒÁáÅФÇÒÁÊӤѭ㹡ÒÃà¾ÔèÁ¼Å¼ÅÔµáÅСÒÃÊѧà¤ÃÒÐËìÊÒûÃСͺàªÔ§Ë¹éÒ·Õè¢Í§¢éÒÇ¡èÓ ¡ÒûÃÐàÁÔ¹¼Å¼ÅÔµáÅСÒÃÊѧà¤ÃÒÐËìÊÒûÃСͺàªÔ§Ë¹éÒ·Õèã¹ÃÐËÇèÒ§¡ÒþѲ¹Ò¢Í§àÁÅç´¢éÒÇ¡èÓ㹡ÒõͺʹͧµèÍ¡ÒÃãÊè»ØëÂä¹âµÃਹáÅÐÊѧ¡ÐÊÕã¹¢éÒÇ¡èÓ 3 ¾Ñ¹¸Øì (KDK, KJ-CMU 107 áÅÐ CMU-K4) ·Õè»ÅÙ¡ÀÒÂãµé¡ÒÃãÊè»ØëÂä¹âµÃਹ 2 ÃдѺ ä´éá¡è ãÊè»ØëÂä¹âµÃਹ 120 ¡ÔâÅ¡ÃÑÁ/àΡµÒÃì (N120) áÅÐäÁèãÊè»ØëÂä¹âµÃਹ (N0) ÃèÇÁ¡ÑºÇÔ¸Õ¡ÒÃãÊèÊѧ¡ÐÊÕ 3 ÇÔ¸Õ ¤×Í 1) äÁèãÊè»ØëÂÊѧ¡ÐÊÕ (Zn0) 2) ãÊè»ØëÂÊѧ¡ÐÊÕ·Ò§´Ô¹ÍѵÃÒ 50 ¡ÔâÅ¡ÃÑÁ ZnSO àΡµÒÃì (ZnS) 3) ¡ÒÃãÊèÊѧ¡ÐÊÕ·Ò§ãºÍѵÃÒ 0.5% ZnSO ã¹ÍѵÃÒ 800 ÅÔµÃ/àΡµÒÃì (ZnF) â´Â¾è¹»ØëÂÊѧ¡ÐÊշҧ㺠2 ¤ÃÑé§ ã¹ÃÐÂÐÍÍ¡´Í¡áÅÐÃÐÂÐ 10 ÇѹËÅѧÍÍ¡´Í¡ ã¹ÃÐËÇèÒ§¡ÒþѲ¹ÒàÁÅ索ͧ¢éÒÇ¡èÓ à¡çºµÑÇÍÂèÒ§àÁÅç´¢éÒÇáººÊØèÁ·ÕèÃÐÂÐ 7, 14, 21, 28 áÅÐ 35 ÇѹËÅѧ¨Ò¡ÇѹÍÍ¡´Í¡ ¾ºÇèҼżÅÔµáÅÐͧ¤ì»ÃСͺ¼Å¼ÅÔµ¢Í§¢éÒÇ¡èӵͺʹͧµèÍÍѵÃÒ¡ÒÃãÊè»ØëÂä¹âµÃਹ áÅÐÇÔ¸Õ¡ÒèѴ¡ÒûØëÂÊѧ¡ÐÊÕᵡµèÒ§¡Ñ¹ã¹¢éÒÇáµèÅоѹ¸Øì ¼Å¡Ò÷´Åͧ¾ºÇèÒ ¼Å¼ÅÔµ¢Í§¢éÒÇ¡èÓ ·Ñé§ 3 ¾Ñ¹¸Øì à¾ÔèÁ¢Öé¹à©ÅÕè 4.4 – 5.6 ¡¡./àΡµÒÃì ¨Ò¡¡ÒÃãÊè»ØëÂä¹âµÃਹ N120 ÃèÇÁ¡Ñº¡ÒèѴ¡ÒÃÊѧ¡ÐÊÕẺ ZnS àÁ×èÍà»ÃÕºà·Õº¡Ñº¡ÒÃäÁèãÊè»ØëÂä¹âµÃਹáÅÐÊѧ¡ÐÊÕ ·ÕèÁռżÅÔµà©ÅÕè 2.9 – 3.9 ¡ÔâÅ¡ÃÑÁ./àΡµÒÃì ¹Í¡¨Ò¡¹Õé ÁÕ¡ÒÃà»ÅÕè¹á»Å§¢Í§ÅѡɳÐàÁÅç´ã¹ÃÐËÇèÒ§¡ÒþѲ¹ÒÃÐËÇèÒ§¾Ñ¹¸Øì¢éÒÇ¡èÓ KDK, KJ-CMU 107 áÅÐ CMU-K4 â´ÂÊբͧàÁç´à»ÅÕè¹á»Å§ÍÂèÒ§µèÍà¹×èͧ¨Ò¡ÁèǧÍè͹à»ç¹Áèǧà¢éÁ ã¹ÃÐÂйéÓ¹Á·Õè 14 ÇѹËÅѧÍÍ¡´Í¡ ¨¹¶Ö§ÃÐÂÐÊØ¡á¡è·Õè 35 ÇѹËÅѧÍÍ¡´Í¡ ¤ÇÒÁà¢éÁ¢é¹¢Í§á͹â·ä«ÂÒ¹Ô¹¢Í§¢éÒÇ¡èÓ (35 ÇѹËÅѧà¡çºà¡ÕèÂÇ) ·Ñé§ 3 ¾Ñ¹¸Øì à¾ÔèÁ¢Öé¹µÑé§áµè 72.4 - 194.1 ÁÔÅÅÔ¡ÃÑÁ/100 ¡ÃÑÁ àÁ×èÍ»ÅÙ¡ÀÒÂãµé N120 ÃèÇÁ¡Ñº¡ÒèѴ¡ÒÃÊѧ¡ÐÊÕẺ ZnF à»ÃÕºà·Õº¡Ñº Zn0 áÅÐ ZnS â´ÂÁÕ¤ÇÒÁà¢éÁ¢é¹à©ÅÕè 31.7 – 125.4 ÁÔÅÅÔ¡ÃÑÁ/100 ¡ÃÑÁ áÅÐ 37.4 – 133.47 ÁÔÅÅÔ¡ÃÑÁ/100 ¡ÃÑÁ µÒÁÅӴѺ ¤ÇÒÁà¢éÁ¢é¹¢Í§¿Õ¹ÍÅã¹àÁÅç´µÑé§áµè 269.0 - 413.9 ÁÔÅÅÔ¡ÃÑÁ gallic acid/ 100 ¡ÃÑÁ ÀÒÂãµé N120 ÃèÇÁ¡Ñº¡ÒèѴ¡ÒÃÊѧ¡ÐÊÕẺ ZnF à»ÃÕºà·Õº¡Ñº Zn0 áÅÐ ZnS â´ÂÁÕ¤ÇÒÁà¢éÁ¢é¹à©ÅÕè 266.3 – 383.9 ÁÔÅÅÔ¡ÃÑÁ gallic acid/ 100 ¡ÃÑÁ áÅÐ 268.8 – 385.8 ÁÔÅÅÔ¡ÃÑÁ gallic acid/ 100 ¡ÃÑÁ áÅФÇÒÁÊÒÁÒö㹡Òõéҹ͹ØÁÙÅÍÔÊÃÐ DPPH µÑé§áµè 1981 - 3860 ÁÔÅÅÔ¡ÃÑÁ Trolox/100 ¡ÃÑÁ àÁ×èÍÁÕ¡ÒèѴ¡ÒÃÊѧ¡ÐÊÕẺ ZnF ·Õè»ÅÙ¡ÀÒÂãµéÍѵÃÒ N120 à»ÃÕºà·Õº¡Ñº Zn0 áÅÐ ZnS â´ÂÁÕ¤ÇÒÁà¢éÁ¢é¹ 1247.4 – 3763.0 ÁÔÅÅÔ¡ÃÑÁ¢Í§ Trolox / 100 ¡ÃÑÁ áÅÐ 1247.4 – 3823.8 ÁÔÅÅÔ¡ÃÑÁ¢Í§ Trolox / 100 ¡ÃÑÁ µÒÁÅӴѺ â´ÂÊÃØ»¨Ò¡¼Å¡Ò÷´Åͧ¹ÕéáÊ´§ãËéàËç¹ÇèÒÁÕ¤ÇÒÁᵡµèҧ㹡ÒÃÊÃéÒ§¼Å¼ÅÔµáÅÐÊÒûÃСͺàªÔ§Ë¹éÒ·Õè¢Í§¢éÒÇ¡èӾѹ¸ØìµèÒ§ æ ¡ÒèѴ¡ÒûØëÂä¹âµÃਹáÅÐÊѧ¡ÐÊÕã¹ÃٻẺµèÒ§ æ ÊÒÁÒöÊè§àÊÃÔÁ¼Å¼ÅÔµáÅСÒÃÊÐÊÁÊÒûÃСͺàªÔ§Ë¹éÒ·Õèã¹àÁÅç´¢éÒÇ¡èÓä´éᵡµèÒ§¡Ñ¹ ¡ÒÃãÊè»ØëÂä¹âµÃਹÃèÇÁ¡Ñº¡ÒèѴ¡ÒÃÊѧ¡ÐÊÕ·Ò§´Ô¹ÊÒÁÒöà¾ÔèÁ¼Å¼ÅÔµ¢éÒÇ¡èÓä´é ã¹¢³Ð·Õè¡ÒÃãÊè»ØëÂä¹âµÃਹÃèÇÁ¡Ñº¡Òþè¹Êѧ¡ÐÊÕ·Ò§ãºÊÒÁÒöà¾ÔèÁ¤Ø³¤èÒ·Ò§âÀª¹Ò¡ÒÃáÅСÒÃÊѧà¤ÃÒÐËìÊÒûÃСͺàªÔ§Ë¹éÒ·Õèä´éÍÂèÒ§ÁÕ»ÃÐÊÔ·¸ÔÀÒ¾ â´Â¾ºÇèÒÁÕ¡ÒõͺʹͧµèÍ¡ÒèѴ¡ÒûØëÂä¹âµÃਹáÅÐÊѧ¡ÐÊբͧ¢éÒÇ¡èӾѹ¸Øì»ÃѺ»ÃاÁÒ¡¡ÇèҾѹ¸Øì¾×é¹àÁ×ͧ ´Ñ§¹Ñé¹ ¡ÒÃÊè§àÊÃÔÁ»ÃÐÊÔ·¸ÔÀÒ¾¡ÒüÅÔµ¢éÒÇ¡èÓ·Ñé§ã¹´éÒ¹¼Å¼ÅÔµáÅÐÊÒûÃСͺàªÔ§Ë¹éÒ·ÕèÍÒ¨µéͧÁÕÇÔ¸Õ¡ÒèѴ¡ÒÃä¹âµÃਹáÅÐÊѧ¡ÐÊÕÃèÇÁ¡Ñ¹ÍÂèÒ§àËÁÒÐÊÁã¹¢éÒÇ¡èÓáµèÅоѹ¸Øì â´Â੾ÒÐÍÂèÒ§ÂÔè§ã¹ªèǧ 14 ÇѹËÅѧ¡ÒÃÍÍ¡´Í¡·ÕèÁÕ¤ÇÒÁà¢éÁ¢é¹¢Í§ÊÒûÃСͺµèÒ§ æ ã¹àÁÅç´ÊÙ§·ÕèÊØ´à¾×èÍãËéà¡Ô´»ÃÐÊÔ·¸ÔÀÒ¾ÊÙ§ÊØ´µèÍà¡ÉµÃ¡ÃáÅмÙéºÃÔâÀ¤¢éÒÇ
Chiang Mai University. Library
Address: CHIANG MAI
Email: cmulibref@cmu.ac.th
Role: Advisor
Role: Advisor
Role: Advisor
Created: 2025
Modified: 2568-10-28
Issued: 2025-10-09
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
application/pdf
eng
Descipline: Agronomy
©copyrights Chiang Mai University
RightsAccess:
ÅӴѺ·Õè.ª×èÍá¿éÁ¢éÍÁÙÅ ¢¹Ò´á¿éÁ¢éÍÁÙŨӹǹà¢éÒ¶Ö§ Çѹ-àÇÅÒà¢éÒ¶Ö§ÅèÒÊØ´
1 620851018.pdf 2.42 MB
ãªéàÇÅÒ
0.035065 ÇÔ¹Ò·Õ

Suchila Utasee
Chanakan Thebault Prom-u-thai
Title Creator Type and Date Create
Managing zinc in rice to reduce Iron Toxicity
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Waree Chaitep;Benjavan Rerkasem;Sansanee Jamjod;Chanakan Thebault Prom-u-Thai;Sittichai Lordkaew
Panomwan Boonchuay
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Adaptation to anaerobic condition and tolerance to iron toxicity in rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Waree Chaitep;Benjavan Rerkasem;Sansanee Jamjod;Chanakan Thebault Prom-u-thai
Jenjira Mongon
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genotypic and environmental control of grain quality in Thai rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Waree Chaithep;Benjavan Rerkasem;Sansanee Jamjod;Chanakan Thebault Prom-u-thai;Sangtiwa Suriyong)
Suwannee Laenoi
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genetic structure of weedy rice (Oryza sativa f. spontanea) populations in Thailand
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sunisa Niruntrayakul;Sasanee Jamjod;Benjavan Rerkasem;Chanya Maneechote;Chanakan Thebault Prom-u-thai
Anupong Wongtamee
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Variation in grain morphology and nutritional qualities of local rice varieties from Luang Prabang Province, Lao PDR
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Chanakan Thebault Prom-u-Thai;Sansanee Jamjod;Tonapha Pusadee
Vua, Xiongsiyee
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genetic Control of High Temperature Tolerance in Rice (Oryza sativa L.)
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Arnada Niruntrayakul;Sansanee Jamjod;Benjavan Rerkasem;Chanakan Thebault Prom-u-thai;Tonapha Pusadee
Supansa Sukkeo
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Diversity and grain zinc content of local rice landraces from Southern Thailand
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Jumnian Meesumlee;Chanakan Thebault Prom-u-thai;Sansanee Jamiod;Bernard Dell;Tonapha Pusadee
Nantiya Panomjan
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Effects of genotypes and zinc fertilizer management on grain yield and quality in rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavarn Rerkasem;Chanakan Thebault Prom-u-thai;Somchai Lapanantnoppakhun;Sansanee Jamjod;Tonapha Pusadee
Kankunlanach Khampuang
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Selection and characterization of soil fungi for an insoluble mineral solubilization and plant growth promoting in biofertilizer development
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Kasem Soytong;Saisamorn Lumyong;Wasu Pathom-aree;Chanakan Thebault Prom-u-thai;Terd Disayathanoowat
Surapong Khuna
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genetic diversity and population structure of purple rice (Oryza sativa L.) landraces
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sansanee Jamjod;Tonapha Pusadee;Chanakan Thebault Prom-u-thai
Suksan Fongfon
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Interaction effects between Nitrogen and Zinc Fertilizer Applications on growth, Yield and Zinc Homeostasis in rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Chanakan Thebault Prom-u-thai ; Sansanee Jamjod ; Tonapha Pusadee
Patcharin Tuiwong
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genotypic variation of yield and functional compounds synthesis among purple rice varieties in responses to Nitrogen and Zinc fertilizers
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Chanakan Thebault Prom-u-thai;Sansanee Jamjod;Tonapha Pusadee
Suchila Utasee
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Sansanee Jamjod
Title Creator Type and Date Create
Determinants of rice milling quality and price
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Dell, Bernie;Suthat Julsrigival;Waree Chaitep
Manop Leesawatwong
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genotypic variation in responses to aerobic and anaerobic condition in rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Bell, Richard W.;Dumnern Karladee;Waree Chaitep
Nednapa Insalud
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Utilization of male sterility for hybrid rice production
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Suthat Julsrigival;Chuckree Senthong;Dumnern Karladee;Sansanee Jamjod;Luechai Arayarungsarit
Supaporn Junbuathong
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Boron deficiency in maize
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Dumnern Karladee;Suthat Julsrigival;Pathipan Sutigoolabud
Sittichai Lordkaew
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
The Mechanism controlling boron efficiency in wheat genotypes
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Dell, Bernie ;Bell, Richard W.;Pongmanee Thongbai
Duangjai Nachiangmai
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Inheritance of Aspergillus flavus Resistance in Groundnut
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Dumnern Karladee;Sombat Srichuwong;Sansanee Jamjod;Suthat Julsrigival;Natchanapong Vongburi
Sarita Yoopum
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genetic control of yield and yield components in Azuki bean under highland growing conditions
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Suthat Julsrigival;Dumnern Karladee;Chuckree Senthong;Sansanee Jamjod;Surat Nuglor
Weerapun Kunkaew
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genetics of silicon uptake in upland rice under drought condition
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Suthat Julsrigival;Chuckree Senthong;Dumnern Karladee;Sansanee Jamjod;Surat Nuglor
Pichai Surapornpiboon
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Gene flow between cultivated and wild rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sansanee Jamjod;Benjavan Rerkasem;Dumnern Karladee;Suthat Julsrigival;Chanya Maneechote
Sunisa Niruntrayakul
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Characterization of Khao Dawk Mali 105 rice (Oryza sativa L.cv.KDML 105) induced by low-energy ion beam
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sansanee Jamjod;Thiraphat Vilaithong;Somboon Anuntalabhochai;Liang Deng Yu;Rattaporn Chandej
Boonrak Phanchaisri
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genotypic variation in tolerance to acid soil in local upland rice varietits
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Dummern Karladee;Narit Yimyam;Waree Chaitep
Nattinee Phattarakul
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Manganese efficiency in Thai genotypes
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Dummern Karladee;Narit Yimyam;Waree Chaitep
Rataya Yanaphan
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genetic diversity of common wild rice in Cambodia
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Natchanaphong Vongburi;Sansanee Jamjod;Benjavan Rerkasem
Leng, Layhuot
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Management of iron toxicity in rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Natchanaphong Vongburi;Benjavan Rerkasem;Sansanee Jamjod
Singty Voradeth
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genetic diversity of local rice varieties in Luang Prabang, Lao PDR
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sansanee Jamjod;Benjavan Rerkasem;Natchanapong Vungburi
Khamla Phanthaboun
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Arbuscular mycorrhizal fungi for rubber seedlings production and agroforestry in Northern Lao PDR
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Pathipan Sutigoolabud
Vilaphong Kanyasone
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Physiological and molecular variation in a gall midge resistant local rice variety, Muey Nawng
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Jiraporn Tayutivutikul
Prateep Oupkaew
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Evolutionary dynamics of oryza sativa in Thailand
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sansanee Jamjod;Benjavan Rerkasem;Dumnern Karladee;Natchanapong Vongburl
Tonapha Pusadee
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Comparing growth, yield and nutrient uptake of rice in alternate aerated and anaerated condition
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Waree Chitep
Thang, Dang Huu
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Boron mobility in tropical crop species
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Dell, Bernard;Suthat Julsrigival;Sumitra Poovarodom
Sawika Konsaeng
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Varietal improvement of hybrid tea-rose
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Adisorn Krasaechai;Danai Boonyakiat;Srisulak Dheeranupattana;Thunya Taychasinpitak;Sansanee Jamjod
Wachira Ketpet
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Drought tolerance and nutrient uptake efficiency in maize
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Pathipan Sutigoolabud;Benjavan Rerkasem;Sansanee Jamjod;Dummern Kariadee
Seang Lay Heng
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Effect of nutrient priming of cassava stakes on germination, growth and yield
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Tin Maung Aye;Benjavan Rerkasem;Sansanee Jamjod
Phanthasin Khanthavong
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Alleviating acid soil stress in legumes with arusclar mycorrhizal fungi
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Saisamorn Lumyong;Chanakan Promuthai;Jumnian Wongmo
Ayut Kongpun
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Mapping for gene controlling boron efficiency in wheat
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sansanee Jamjod;Benjavan Rerkasem;Dumnern Karladee;Natchanapong Vongburi;Waree Chaitep
Supannika Punchana
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Managing zinc in rice to reduce Iron Toxicity
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Waree Chaitep;Benjavan Rerkasem;Sansanee Jamjod;Chanakan Thebault Prom-u-Thai;Sittichai Lordkaew
Panomwan Boonchuay
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Adaptation to anaerobic condition and tolerance to iron toxicity in rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Waree Chaitep;Benjavan Rerkasem;Sansanee Jamjod;Chanakan Thebault Prom-u-thai
Jenjira Mongon
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Iron and Zinc partitioning in rice grain
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Sansanee Jamjod;Chanakan Thebault Prom-thai;Waree Chaithep;Sittichai Lordkaew
Chorpet Saenchai
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Inheritance of Resistance to Fenoxaprop-p-ethyl Herbicide in Barnyardgrass (Echinochloa crusgalli (L.) Beauv.) and Sprangletop (Leptochloa chinensis (L.) Nees)
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sansanee Jamjod;Benjavan Rerkasem;Chanya Maneechote;Chanakan Prom-u-thai;Sunisa Niruntrayakul
Ekkasit Phongphitak
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genotypic and environmental control of grain quality in Thai rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Waree Chaithep;Benjavan Rerkasem;Sansanee Jamjod;Chanakan Thebault Prom-u-thai;Sangtiwa Suriyong)
Suwannee Laenoi
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Variation in grain morphology and nutritional qualities of local rice varieties from Luang Prabang Province, Lao PDR
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Chanakan Thebault Prom-u-Thai;Sansanee Jamjod;Tonapha Pusadee
Vua, Xiongsiyee
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genetic Control of High Temperature Tolerance in Rice (Oryza sativa L.)
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Arnada Niruntrayakul;Sansanee Jamjod;Benjavan Rerkasem;Chanakan Thebault Prom-u-thai;Tonapha Pusadee
Supansa Sukkeo
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genotypic variation in invasiveness traits of weedy rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sunisa Niruntrakul;Sansanee Jamjod;Chanya Maneechote;Chanakarn Thebault Prom-u-thai
Ronnachit Jindalouang
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Agronomic and molecular characterisation of cowpea (Vigna unguiculata) populations from the Northern Thailand
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sansanee Jamjod;Tonapha Pusadee;Chanakan Prom-u-thai
Muhammad Zahrulakmal bin Ahmad Mahir
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Effects of genotypes and zinc fertilizer management on grain yield and quality in rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavarn Rerkasem;Chanakan Thebault Prom-u-thai;Somchai Lapanantnoppakhun;Sansanee Jamjod;Tonapha Pusadee
Kankunlanach Khampuang
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Phenotypic and chemotype variation of Andrographis paniculata from different regions in Thailand
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Tonapha Pusadee;Sarana Sommano;Sansanee Jamjod
Nuttacha Onsa
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genetic diversity and population structure of purple rice (Oryza sativa L.) landraces
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sansanee Jamjod;Tonapha Pusadee;Chanakan Thebault Prom-u-thai
Suksan Fongfon
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Interaction effects between Nitrogen and Zinc Fertilizer Applications on growth, Yield and Zinc Homeostasis in rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Chanakan Thebault Prom-u-thai ; Sansanee Jamjod ; Tonapha Pusadee
Patcharin Tuiwong
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genotypic variation of yield and functional compounds synthesis among purple rice varieties in responses to Nitrogen and Zinc fertilizers
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Chanakan Thebault Prom-u-thai;Sansanee Jamjod;Tonapha Pusadee
Suchila Utasee
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Tonapha Pusadee
Title Creator Type and Date Create
Variation in grain morphology and nutritional qualities of local rice varieties from Luang Prabang Province, Lao PDR
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavan Rerkasem;Chanakan Thebault Prom-u-Thai;Sansanee Jamjod;Tonapha Pusadee
Vua, Xiongsiyee
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genetic Control of High Temperature Tolerance in Rice (Oryza sativa L.)
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Arnada Niruntrayakul;Sansanee Jamjod;Benjavan Rerkasem;Chanakan Thebault Prom-u-thai;Tonapha Pusadee
Supansa Sukkeo
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Diversity and grain zinc content of local rice landraces from Southern Thailand
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Jumnian Meesumlee;Chanakan Thebault Prom-u-thai;Sansanee Jamiod;Bernard Dell;Tonapha Pusadee
Nantiya Panomjan
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Physiology and molecular mechanisms involving the regulation of silicon homeostasis in Thai Rice Varieties
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Beqiavan Rerkase;chanakan Thebault Prom-u-th; Sansanee Jam;Jaroon Jakmunee);Tonapha Pusadee
Nanthana Chaiwong
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Agronomic and molecular characterisation of cowpea (Vigna unguiculata) populations from the Northern Thailand
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sansanee Jamjod;Tonapha Pusadee;Chanakan Prom-u-thai
Muhammad Zahrulakmal bin Ahmad Mahir
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Effects of plant growth regulators on fruit qualities and quality detection in table grapes using Near Infrared Spectroscopy
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Chiti Sritontip Daruni Naphrom ;Danai Boonyakiat ;Weenun Bundithya ;Tonapha Pusadee
Chaorai Kanchanomai
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Effects of genotypes and zinc fertilizer management on grain yield and quality in rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Benjavarn Rerkasem;Chanakan Thebault Prom-u-thai;Somchai Lapanantnoppakhun;Sansanee Jamjod;Tonapha Pusadee
Kankunlanach Khampuang
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Phenotypic and chemotype variation of Andrographis paniculata from different regions in Thailand
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Tonapha Pusadee;Sarana Sommano;Sansanee Jamjod
Nuttacha Onsa
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genetic diversity and population structure of purple rice (Oryza sativa L.) landraces
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Sansanee Jamjod;Tonapha Pusadee;Chanakan Thebault Prom-u-thai
Suksan Fongfon
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Interaction effects between Nitrogen and Zinc Fertilizer Applications on growth, Yield and Zinc Homeostasis in rice
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Chanakan Thebault Prom-u-thai ; Sansanee Jamjod ; Tonapha Pusadee
Patcharin Tuiwong
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Genotypic variation of yield and functional compounds synthesis among purple rice varieties in responses to Nitrogen and Zinc fertilizers
ÁËÒÇÔ·ÂÒÅÑÂàªÕ§ãËÁè
Chanakan Thebault Prom-u-thai;Sansanee Jamjod;Tonapha Pusadee
Suchila Utasee
ÇÔ·ÂÒ¹Ô¾¹¸ì/Thesis
Copyright 2000 - 2025 ThaiLIS Digital Collection Working Group. All rights reserved.
ThaiLIS is Thailand Library Integrated System
ʹѺʹعâ´Â Êӹѡ§Ò¹ºÃÔËÒÃà·¤â¹âÅÂÕÊÒÃʹà·Èà¾×è;Ѳ¹Ò¡ÒÃÈÖ¡ÉÒ
¡ÃзÃǧ¡ÒÃÍØ´ÁÈÖ¡ÉÒ ÇÔ·ÂÒÈÒʵÃì ÇÔ¨ÑÂáÅйÇѵ¡ÃÃÁ
328 ¶.ÈÃÕÍÂØ¸ÂÒ á¢Ç§ ·Øè§¾­Òä· à¢µ ÃÒªà·ÇÕ ¡Ãا෾ 10400 â·Ã. â·Ã. 02-232-4000
¡ÓÅѧ Í͹ìäŹì
ÀÒÂã¹à¤Ã×Í¢èÒ ThaiLIS ¨Ó¹Ç¹ 2
ÀÒ¹͡à¤Ã×Í¢èÒ ThaiLIS ¨Ó¹Ç¹ 9,636
ÃÇÁ 9,638 ¤¹

More info..
¹Í¡ ThaiLIS = 277,997 ¤ÃÑé§
ÁËÒÇÔ·ÂÒÅÑÂÊѧ¡Ñ´·ºÇ§à´ÔÁ = 1,130 ¤ÃÑé§
ÁËÒÇÔ·ÂÒÅÑÂÃÒªÀѯ = 98 ¤ÃÑé§
ÁËÒÇÔ·ÂÒÅÑÂà·¤â¹âÅÂÕÃÒªÁ§¤Å = 21 ¤ÃÑé§
˹èǧҹÍ×è¹ = 16 ¤ÃÑé§
ÁËÒÇÔ·ÂÒÅÑÂàÍ¡ª¹ = 9 ¤ÃÑé§
ʶҺѹ¾ÃкÃÁÃÒªª¹¡ = 4 ¤ÃÑé§
ÁËÒÇÔ·ÂÒÅÑÂʧ¦ì = 1 ¤ÃÑé§
ÃÇÁ 279,276 ¤ÃÑé§
Database server :
Version 2.5 Last update 1-06-2018
Power By SUSE PHP MySQL IndexData Mambo Bootstrap
ÁջѭËÒ㹡ÒÃãªé§Ò¹µÔ´µèͼèÒ¹Ãкº UniNetHelp


Server : 8.199.134
Client : Not ThaiLIS Member
From IP : 216.73.216.104