แจ้งเอกสารไม่ครบถ้วน, ไม่ตรงกับชื่อเรื่อง หรือมีข้อผิดพลาดเกี่ยวกับเอกสาร ติดต่อที่นี่ ==>
หากไม่มีอีเมลผู้รับให้กรอก thailis-noc@uni.net.th ติดต่อเจ้าหน้าที่เจ้าของเอกสาร กรณีเอกสารไม่ครบหรือไม่ตรง

Automatic liver tumor segmentation in computed tomography (CT) imaging
การแบ่งส่วนเนื้องอกในตับอัตโนมัติด้วยการคำนวณจากถ่ายภาพเอกซเรย์คอมพิวเตอร์ (CT)

Abstract: Automatic liver tumor segmentation is a highly important application for diagnosing and treating liver tumors. Due to the diversity of tumor shape and intensity alteration, it has become an extremely challenging procedure. Automatic liver tumor segmentation has the potential to establish a diagnostic standard for providing important radiological information to physicians. Recently, deep convolutional neural networks have shown numerous benefits in feature extraction and learning in terms of medical image segmentation. However, the model can be inconsistent in imitating visual attention as well as awareness of radiological expertise for tumor recognition and segmentation tasks due to multi-layer dense feature stacking. Attention mechanisms for optimized feature selection have evolved to bridge that gap in visual attention capabilities. In this research, we propose a novel network called Multi Attention Network (MANet) as a fusion of attention techniques to learn and emphasize significant features while suppressing irrelevant features for liver tumor segmentation. The proposed deep learning network is based on the U-Net architecture. Furthermore, the encoder has a residual mechanism. The convolutional block attention module (CBAM) has been divided into channel attention and spatial attention modules to be implemented in the encoder and decoder separately. The spatial attention mechanism in Attention U-Net has been integrated into the proposed network to capture low-level features to combine with high-level ones. The constructed deep learning architecture is trained and evaluated using multiple evaluation metrics using the publically available MICCAI 2017 Liver Tumor Segmentation (LiTS17) dataset and 3DIRCADb dataset. MANet produced promising results when compared to state-of-the-art methods with relatively low parameter overhead.
Abstract: การแบ่งส่วนภาพของเนื้องอกในตับจากภาพถ่ายรังสีแบบอัตโนมัติ เป็นวิธีการที่สําคัญในการวินิจฉัยและ รักษาโรคที่เกี่ยวกับเนื้องอกในตับ แต่ด้วยความที่ภาพถ่ายรังสีของเนื้องอกมีรูปร่างและความเข้มแสงที่หลากหลายมาก จึงทำให้การแบ่งส่วนภาพนั้นมีความท้าทายอย่างยิ่ง หลายปีมานี้ โมเดลโครงข่ายประสาทเทียมเชิงลึกได้ถูกนำมาใช้ในการแยกส่วนภาพทางการแพทย์ โดยนำโมเดลมาใช้เพื่อการสกัดคุณลักษณะเด่นจากภาพ รวมถึงการเรียนรู้คุณลักษณะเด่นเหล่านั้น แต่อย่างไรก็ดีโมเดลโครงข่ายประสาทเทียมเชิงลึกเหล่านี้ ยังไม่แม่นยำเท่าสายตาและความเชี่ยวชาญของรังสีแพทย์ เนื่องจากความซับซ้อนของภาพ แต่ด้วยการกลไกการทํางานของเทคนิค Attention mechanisms ในการ optimize การเลือกคุณลักษณะภาพ ได้รับการพัฒนาอย่างต่อเนื่อง จนระบบมีความสามารถในการทํา Visual attention ที่มีประสิทธิภาพและใกล้เคียงมนุษย์มากขึ้น ในงานวิจัยนี้ เราจึงเสนอเครือข่ายใหม่ที่เรียกว่า Multi Attention Network หรือ MANet ซึ่งเป็นการผสมผสานเทคนิค Attention เพื่อเรียนรู้และเน้นคุณลักษณะที่สําคัญ ในขณะเดียวกันก็ตัดคุณลักษณะที่ไม่เกี่ยวข้องกับการแบ่งส่วนภาพเนื้องอก ซึ่ง MANet ใช้สถาปัตยกรรม U-Net เป็นฐาน และยังมีตัวเข้ารหัสที่ใช้กลไก Residual mechanism ด้วย อีกทั้งมีการใช้ร่วมกับ convolutional block attention module (CBAM) หรือโมเดลที่มีการแบ่งโมดูล ออกเป็นโมดูลที่สนใจฟีเจอร์ที่สําคัญและโมดูลที่สนใจพื้นที่ที่สําคัญ โดยจะนําไปใช้ในตัวเข้ารหัสและตัวถอดรหัสแยกกัน สรุปได้ว่าเราได้นํา Attention U-Net มาใช้ร่วมกับ CBAM เพื่อรวมคุณสมบัติเด่นของทั้งสองเข้าด้วยกัน โดยสถาปัตยกรรมการเรียนรู้เชิงลึกที่เราสร้างขึ้นหรือ MANet ได้รับการฝึกฝนและประเมินประสิทธิภาพโดยใช้ตัววัดการประเมินหลายรายการ โดยใช้ชุดข้อมูล MICCAI 2017 Liver Tumor Segmentation (LiTS17) และชุดข้อมูล DIRCADb ซึ่งผลจากการทดสอบพบว่า MANet นั้นใช้พารามิเตอร์น้อยกว่าแต่ยังให้ผลลัพธ์ที่น่าพึงพอใจเมื่อเปรียบเทียบกับวิธีการที่ใช้ในปัจจุบัน (State-of-the- art)
Chulalongkorn University. Office of Academic Resources
Address: BANGKOK
Email: cuir@car.chula.ac.th
Role: Advisor
Issued: 2023
Modified: 2025-01-10
Issued: 2025-01-10
วิทยานิพนธ์/Thesis
application/pdf
URL: http://doi.org/10.58837/CHULA.THE.2023.97
eng
©copyrights Chulalongkorn University
RightsAccess:
ลำดับที่.ชื่อแฟ้มข้อมูล ขนาดแฟ้มข้อมูลจำนวนเข้าถึง วัน-เวลาเข้าถึงล่าสุด
1 6470369721.pdf 7.13 MB
ใช้เวลา
0.031685 วินาที

Kasun Gayashan Hettihewa
Title Contributor Type
Automatic liver tumor segmentation in computed tomography (CT) imaging
จุฬาลงกรณ์มหาวิทยาลัย
Kasun Gayashan Hettihewa
Thanarat Chalidabhongse
วิทยานิพนธ์/Thesis
Thanarat Chalidabhongse
Title Creator Type and Date Create
Random field optimization using local label hierarchy
จุฬาลงกรณ์มหาวิทยาลัย
Thanarat Chalidabhongse
Sangsan Leelhapantu
วิทยานิพนธ์/Thesis
HUMAN ACTION CLASSIFICATION USING MOTION AND APPEARANCE FEATURES FOR ACTIVITY UNDERSTANDING AND ANOMALY DETECTION IN VISUAL SURVEILLANCE
จุฬาลงกรณ์มหาวิทยาลัย
Supavadee Aramvith ;Thanarat Chalidabhongse
Kanokphan Lertniphonphan
วิทยานิพนธ์/Thesis
Red blood cell segmentation and classification from microscopic images using machine learning
จุฬาลงกรณ์มหาวิทยาลัย
Thanarat Chalidabhongse;Duangdao Palasuwan
Korranat Naruenatthanaset
วิทยานิพนธ์/Thesis
Confusion detection from facial expression using deep neural network
จุฬาลงกรณ์มหาวิทยาลัย
Thanarat Chalidabhongse
Nun Vanichkul
วิทยานิพนธ์/Thesis
Thai scene text recognition
จุฬาลงกรณ์มหาวิทยาลัย
Thanarat Chalidabhongse
Thananop Kobchaisawat
วิทยานิพนธ์/Thesis
Integrated multi-omics analysis of gut microbiome and host transcriptome to identify novel biomarkers for hepatocellular carcinoma /
จุฬาลงกรณ์มหาวิทยาลัย
Thanarat Chalidabhongse;Natthaya Chuaypen
Jakkrit Khamjerm
วิทยานิพนธ์/Thesis
Automatic liver tumor segmentation in computed tomography (CT) imaging
จุฬาลงกรณ์มหาวิทยาลัย
Thanarat Chalidabhongse
Kasun Gayashan Hettihewa
วิทยานิพนธ์/Thesis
Copyright 2000 - 2025 ThaiLIS Digital Collection Working Group. All rights reserved.
ThaiLIS is Thailand Library Integrated System
สนับสนุนโดย สำนักงานบริหารเทคโนโลยีสารสนเทศเพื่อพัฒนาการศึกษา
กระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม
328 ถ.ศรีอยุธยา แขวง ทุ่งพญาไท เขต ราชเทวี กรุงเทพ 10400 โทร. โทร. 02-232-4000
กำลัง ออน์ไลน์
ภายในเครือข่าย ThaiLIS จำนวน 12
ภายนอกเครือข่าย ThaiLIS จำนวน 4,142
รวม 4,154 คน

More info..
นอก ThaiLIS = 165,181 ครั้ง
มหาวิทยาลัยสังกัดทบวงเดิม = 1,367 ครั้ง
มหาวิทยาลัยราชภัฏ = 996 ครั้ง
มหาวิทยาลัยเทคโนโลยีราชมงคล = 205 ครั้ง
หน่วยงานอื่น = 18 ครั้ง
มหาวิทยาลัยเอกชน = 12 ครั้ง
มหาวิทยาลัยสงฆ์ = 4 ครั้ง
สถาบันพระบรมราชชนก = 3 ครั้ง
มหาวิทยาลัยการกีฬาแห่งชาติ = 2 ครั้ง
รวม 167,788 ครั้ง
Database server :
Version 2.5 Last update 1-06-2018
Power By SUSE PHP MySQL IndexData Mambo Bootstrap
มีปัญหาในการใช้งานติดต่อผ่านระบบ UniNetHelp


Server : 8.199.134
Client : Not ThaiLIS Member
From IP : 216.73.216.63