แจ้งเอกสารไม่ครบถ้วน, ไม่ตรงกับชื่อเรื่อง หรือมีข้อผิดพลาดเกี่ยวกับเอกสาร ติดต่อที่นี่ ==>
หากไม่มีอีเมลผู้รับให้กรอก thailis-noc@uni.net.th ติดต่อเจ้าหน้าที่เจ้าของเอกสาร กรณีเอกสารไม่ครบหรือไม่ตรง

ReCasNet: reducing mismatch within the two-stage mitosis detection framework
รีแคสเน็ต:การลดความไม่เข้ากันในกรอบระบบการตรวงจับเซลล์ขณะไมโทสิสโดยอัตโนมัติแบบสองขั้นตอน

LCSH: Deep learning (Machine learning)
LCSH: Image analysis
LCSH: Medicine -- Computer simulation
LCSH: Mitosis
Abstract: Mitotic count (MC) is an important histological parameter for cancer diagnosis and grading, but the manual process to obtain this metric is tedious and not fully reproducible across different pathologists. To mitigate this problem, several deep learning models have been utilized to speed up the process. Typically, the problem is formulated as a two-stage deep learning pipeline: the detection stage for proposing the potential candidates for mitotic cells and the classification stage for refining prediction confidences from the former stage. However, this paradigm can lead to inconsistencies in the classification stage due to the poor prediction quality of the detection stage and the mismatches in training data distributions between the two stages. This thesis proposes a Refine Cascade Network (ReCasNet), an improved deep learning pipeline that introduces three improvements to alleviate the aforementioned problems. First, window relocation was used to suppress poor-quality false positive boxes produced by the detection stage around the sliding window border. Second, we proposed an additional deep learning model to align the poorly centered objects to the true object center. Third, additional data were queried from the training slides to teach the classification stage to bridge the training distribution gap between the two stages. We evaluated the performance of ReCasNet on two public large-scale mitotic figure recognition datasets, canine cutaneous mast cell tumor (CCMCT) and canine mammary carcinoma (CMC). By using our proposed pipeline, we achieved up to 4.8% F1 improvements for mitotic cell detection performance and 44.1% reductions in mean absolute percentage error (MAPE) for MCprediction. Techniques that underlie our proposed method can be generalized to other detection and classification algorithms and should contribute to improving the performances of deep learning models in broad digital pathology applications.
Abstract: การนับจำนวนเซลล์ขณะไมโทสิสนั้นเป็นตัวแปรที่สำคัญในทางพยาธิวิทยาสำหรับการ วินิจฉัยและตรวจระดับโรคมะเร็ง แต่ทว่าการจะได้มาซึ่งตัวแปรนี้โดยใช้แพทย์เป็นผู้ตรวจนั้น ใช้เวลายาวนานและมีโอกาสผิดพลาดได้ ดังนั้นจึงมีระบบการเรียนรู้เชิงลึกจำนวนหนึ่งที่ได้ ถูกเสนอมาเพื่อช่วยกระบวนการนี้โดยการตรวจจับเซลล์ขณะไมโทสิสทั้งหมดในภาพสไลด์ โดยระบบที่ถูกเสนอเหล่านี้เกือบทั้งหมดเป็นระบบการทำงานแบบสองขั้นตอนซึ่งประกอบไป ด้วย ขั้นตอนตรวจจับ โดยจะมีแบบจำลองสำหรับตรวจจับวัตถุเพื่อเสนอตำแหน่งที่เซลล์ขณะ ไมโทสิสน่าจะอยู่ และ ขั้นตอนการจำแนก ซึ่งจะมีแบบจำลองสำหรับแยกแยะประเภทวัตถุ มาปรับปรุงความมั่นใจของวัตถุจากขั้นตอนที่แล้วโดยละเอียด ถึงแม้กระนั้นการแก้ปัญหา ด้วยวิธีนี้ก็นำมาซึ่งปัญหาใหม่เช่นเดียวกัน เนื่องจากขั้นตอนการจำแนกนั้นประสบปัญหาจาก การทำงานที่ไม่สม่ำเสมอของขั้นตอนตรวจจับ และความแตกต่างของการกระจายตัวของ ชุดข้อมูลฝึกสอน ดังนั้น งานนี้จึงได้เสนอ ระบบการปรับปรุงคุณภาพแบบเป็นขั้นตอน (รี แคสเน็ต) ซึ่งเป็นกระบวนการที่ออกแบบมาเพื่อบรรเทาปัญหาที่กล่าวมาก่อนหน่า โดยงาน นี้ได้เสนอการพัฒนาจากระบบเดิมขึ้นมาสามประการ ประการแรกคือเปลี่ยนกระบวนการ ย้ายหน้าต่างเพื่อให้ผลการทำนายคุณภาพต่ำที่ถูกเสนอโดยขั้นตอนตรวจจับลดลง ประการ ที่สองคือการปรับปรุงตำแหน่งศูนย์กลางของวัตถุ โดยมีแบบจำลองอีกตัวเพื่อเสนอตำแหน่ง ศูนย์กลางที่แท้จริงของวัตถุ ประการที่สามคือการปรับปรุงการเลือกข้อมูลมาฝึกสอนของขั้น ตอนการจำแนกเพื่อให้การกระจายตัวของชุดข้อมูลฝึกสอนของทั้งสองขั้นตอนลดลง ทั้งนี้ ระบบที่เสนอมานั้นได้ถูกนำมาวัดผลในฐานข้อมูลมะเร็งเต้านมและผิวหนังสุนัขขนาดใหญ่ เพื่อพิสูจน์ประสิทธิภาพของระบบ โดยการศึกษาพบว่าวิธีที่เสนอในงานนี้ได้ทำให้ค่า F1 เพิ่ม จากจะระบบเดิมที่มีอยู่มากขึ้นสูงสุดถึงร้อยละ 4.8 โดยสัมบูรณ์ และทำให้ความผิดพลาด ของการนับจำนวนเซลล์ขณะไมโทสิสลดลงสูงสุดร้อยละ 28.2 โดยงานที่เสนอมานั้นควรจะ สามารถนำไปใช้ได้ทั่วไปในระบบการทำงานแบบสองขั้นตอน และทำให้ประสิทธิภาพโดยรวม ของระบบการเรียนรู้เชิงลึกในงานด้านพยาธิวิทยานั้นสูงขึ้น
Chulalongkorn University. Office of Academic Resources
Address: BANGKOK
Email: cuir@car.chula.ac.th
Role: advisor
Created: 2022
Modified: 2024-11-15
Issued: 2024-11-15
วิทยานิพนธ์/Thesis
application/pdf
eng
©copyrights Chulalongkorn University
RightsAccess:
ลำดับที่.ชื่อแฟ้มข้อมูล ขนาดแฟ้มข้อมูลจำนวนเข้าถึง วัน-เวลาเข้าถึงล่าสุด
1 6372025021[1].pdf 7.86 MB
ใช้เวลา
0.035091 วินาที

Chawan Piansaddhayanon
Title Contributor Type
ReCasNet: reducing mismatch within the two-stage mitosis detection framework
จุฬาลงกรณ์มหาวิทยาลัย
Chawan Piansaddhayanon
Ekapol Chuangsuwanich
วิทยานิพนธ์/Thesis
Ekapol Chuangsuwanich
Title Creator Type and Date Create
Lithological Classification By Deep Learning Algorithm
จุฬาลงกรณ์มหาวิทยาลัย
Waruntorn Kantipanyacharoen;Ekapol Chuangsuwanich
Worapop Thongsame
วิทยานิพนธ์/Thesis
A generative adversarial network for generating realistic users using embedding from recommendation systems
จุฬาลงกรณ์มหาวิทยาลัย
Ekapol Chuangsuwanich
Parichat Chonwiharnphan
วิทยานิพนธ์/Thesis
Knowing when not to answer: positional peptide sequencing with encoder-decoder networks
จุฬาลงกรณ์มหาวิทยาลัย
Ekapol Chuangsuwanich;Sira Sriswasdi
Korrawe Karunratanakul
วิทยานิพนธ์/Thesis
Semi-supervised deep learning with malignet for bone lesion instance segmentation using bone scintigraphy
จุฬาลงกรณ์มหาวิทยาลัย
Ekapol Chuangsuwanich;Yothin Rakvongthai
Terapap Apiparakoon
วิทยานิพนธ์/Thesis
Deep sequential real estate recommendation approach for solving item cold start problem
จุฬาลงกรณ์มหาวิทยาลัย
Proadpran Punyabukkana;Ekapol Chuangsuwanich
Jirut Polohakul
วิทยานิพนธ์/Thesis
Redesigning weakly supervised localization architectures for medical images
จุฬาลงกรณ์มหาวิทยาลัย
;Boonserm Kijsirikul;Ekapol Chuangsuwanich;Sira Sriswasdi
Konpat Preechakul
วิทยานิพนธ์/Thesis
Accurate surface ultraviolet radiation forecasting for clinical applications with deep neural network
จุฬาลงกรณ์มหาวิทยาลัย
Ekapol Chuangsuwanich;Sira Sriswasdi
Raksit Raksasat
วิทยานิพนธ์/Thesis
Spectral and latent representation distortion for TTS evaluation
จุฬาลงกรณ์มหาวิทยาลัย
Ekapol Chuangsuwanich;Atiwong Suchato
Thananchai Kongthaworn
วิทยานิพนธ์/Thesis
Automatic cardioembolic stroke prediction using clinical features and non-contrast CT images
จุฬาลงกรณ์มหาวิทยาลัย
Ekapol Chuangsuwanich;Proadpran Punyabukkana
Pasit Jakkrawankul
วิทยานิพนธ์/Thesis
Adaptive image preprocessing and augmentation for disease screening on multi-source chest x-ray datasets
จุฬาลงกรณ์มหาวิทยาลัย
Proadpran Punyabukkana;Ekapol Chuangsuwanich
Wasunan Chokchaithanakul
วิทยานิพนธ์/Thesis
Incorporating context into non-autoregressive model using contextualized CTC for sequence labelling
จุฬาลงกรณ์มหาวิทยาลัย
Atiwong Suchato;Ekapol Chuangsuwanich
Burin Naowarat
วิทยานิพนธ์/Thesis
ReCasNet: reducing mismatch within the two-stage mitosis detection framework
จุฬาลงกรณ์มหาวิทยาลัย
Ekapol Chuangsuwanich
Chawan Piansaddhayanon
วิทยานิพนธ์/Thesis
A Comparative Study on Out of Scope Detection for Chest X-ray Images
จุฬาลงกรณ์มหาวิทยาลัย
Ekapol Chuangsuwanich;Proadpran Punyabukkana
Nuttapol Kamolkunasiri
วิทยานิพนธ์/Thesis
Radiomics-based prediction of radiation-induced hypothyroidism in nasopharyngeal cancer patients
จุฬาลงกรณ์มหาวิทยาลัย
Yothin Rakvongthai;Ekapol Chuangsuwanich
Napat Ritlumlert
วิทยานิพนธ์/Thesis
Article feed recommendation for Thai social network application using article context based on deep learning
จุฬาลงกรณ์มหาวิทยาลัย
Ekapol Chuangsuwanich
Pannawit Athipatcharawat
วิทยานิพนธ์/Thesis
Copyright 2000 - 2026 ThaiLIS Digital Collection Working Group. All rights reserved.
ThaiLIS is Thailand Library Integrated System
สนับสนุนโดย สำนักงานบริหารเทคโนโลยีสารสนเทศเพื่อพัฒนาการศึกษา
กระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม
328 ถ.ศรีอยุธยา แขวง ทุ่งพญาไท เขต ราชเทวี กรุงเทพ 10400 โทร. โทร. 02-232-4000
กำลัง ออน์ไลน์
ภายในเครือข่าย ThaiLIS จำนวน 1
ภายนอกเครือข่าย ThaiLIS จำนวน 1,342
รวม 1,343 คน

More info..
นอก ThaiLIS = 39,555 ครั้ง
มหาวิทยาลัยสังกัดทบวงเดิม = 24 ครั้ง
มหาวิทยาลัยราชภัฏ = 12 ครั้ง
หน่วยงานอื่น = 4 ครั้ง
มหาวิทยาลัยเทคโนโลยีราชมงคล = 3 ครั้ง
สถาบันพระบรมราชชนก = 1 ครั้ง
รวม 39,599 ครั้ง
Database server :
Version 2.5 Last update 1-06-2018
Power By SUSE PHP MySQL IndexData Mambo Bootstrap
มีปัญหาในการใช้งานติดต่อผ่านระบบ UniNetHelp


Server : 8.199.134
Client : Not ThaiLIS Member
From IP : 216.73.216.5