Abstract:
There are thousands of academic journals in various fields of study. An article author must spend significant time searching and selecting a journal suitable for the articles content before submitting it to a journal for consideration. Since many articles are submitted to a journal at a time, it would take time for an editor to review, submit it to reviewers, and inform the results back to the author. Therefore, this research introduced a recommendation system to help the author choose an appropriate journal more effectively, based on TCI Thai Journals Online Database (ThaiJO). Data from Thai and English articles were used for analysis in this research. Our work involved studying the applied data, cleaning the data, and modeling, which includes calculating the importance of text by Term Frequency - Inverse Document Frequency (TF-IDF), calculating similarity scores between articles and journals using Cosine Similarity and then ranking the scores to recommend the most suitable journal. The experiment with 10-fold cross-validation shows that when we combine Thai and English keywords and abstract data, the accuracy in the form of hit rate is improved to 0.87965 from applying only English (0.84948) or Thai data (0.80383) and the accuracy of 10-fold cross-validation is better than the accuracy from 5-fold cross-validation and modeling using cosine similarity between research article.