Abstract:
Medical biomaterials are continuously being developed, especially hydrogel composites with nanoparticles for recovery after injury. The recent study has developed hydrogel mixed silver nanoparticles to reduce bacteria growth. We further synthesize hydrogels combined curcumin-loaded silver nanoparticles (Cur-AgNP); however, still remains no evidence regarding biosafety and wound healing efficacy in vitro and in vivo studies. Human dermal fibroblasts were incubated Cur-AgNPs and evaluated cell toxicity, cell proliferation, collagen production and wound contraction rate. In addition, Cur-AgNP hydrogels were treated on rat skin excision wounds to determine bacterial contamination, skin histology and molecular mechanisms related wound healing. The results found that Cur-AgNPs exhibited low cytotoxicity and enhance proliferation, gap filling, collagen production and wound healing in dermal fibroblast cell culture. Furthermore, Cur-AgNP hydrogels could reduce bacterial colonies and promoted wound healing with modulation of inflammatory markers and collagen deposition through the expression of gene regulated wound healing (i.e., IL-6, EGF, collagen 1, collagen 3, FGF2 and TGF-β1) on days 4, 8, 12, and 16 after treatment. These results indicated that Cur-AgNP hydrogels could improve wound healing faster than common antibacterial gels. In conclusion, the formulation of this Cur-AgNP hydrogel is an effective wound healing biomaterial with non-toxicity and antimicrobial effects.