Kitisak Kanjanun. GRNN prediction model for temperature-induced deformation of CRTS II Unballasted slab track. (). King Mongkut's University of Technology North Bangkok. Central Library. : , 2022.
GRNN prediction model for temperature-induced deformation of CRTS II Unballasted slab track
Abstract:
The General Regression Neural Network (GRNN) is one of the algorithms of artificial neural networks (ANN) that receives much attention in prediction applications. This research used the GRNN to predict the temperature induced deformation of unballasted track structures based on experimental data considering external weather conditions, such as sunshine duration, rain conditions, daily maximum temperature, daily minimum temperature, and daily average wind speed. The GRNN network predicts the average absolute error of the prediction results (0.0318 degree celsius), the maximum absolute error (1.7729degree celsius), and the GRNN prediction sample mean squared error (0.070701). The average relative error is 0.32 percent. The finding of this study shows that the GRNN prediction method has good accuracy and robustness. Furthermore, it can promote the research of unballasted track temperature fields that are related to concrete structures."
King Mongkut's University of Technology North Bangkok. Central Library
Address:
BANGKOK
Email:
library@kmutnb.ac.th
Created:
2022
Modified:
2022-09-24
Issued:
2022-09-24
บทความ/Article
application/pdf
BibliograpyCitation :
APPLIED SCIENCE AND ENGINEERING PROGRESS. vol. 15, no. 4 (Oct-Dec. 2022), p. 1-9.