แจ้งเอกสารไม่ครบถ้วน, ไม่ตรงกับชื่อเรื่อง หรือมีข้อผิดพลาดเกี่ยวกับเอกสาร ติดต่อที่นี่ ==>
หากไม่มีอีเมลผู้รับให้กรอก thailis-noc@uni.net.th ติดต่อเจ้าหน้าที่เจ้าของเอกสาร กรณีเอกสารไม่ครบหรือไม่ตรง

The kernel density estimation for crime analysis : a case study in three provinces southern of Thailand

LCSH: Burapha University.Faculty of Geoinformatics
Classification :.DDC: 364
LCSH: Crime
LCSH: Crime analysis
Abstract: The Three South Thailand crime is a conflict in the Malay Pattani region that began around 1948 as an ethnic and religious separatists’ crime. For centuries the Muslim Malay minority lived at peace with the Buddhist Thai majority in the Southern Thailand region. In 1947, Haji Sulong launched a petition campaign demanding autonomy of Islamic Law, he was arrested for treason then mysteriously disappeared 5 years later after release. By the 1950s a Patani Nationalist Movement began to lead to the South Thailand crime. It has become more complex and increasingly violent since 2001. The problem of crime affects the quality of life that causes a lot of damage both on a personal level and social level. It also affects the feelings of fear and insecurity that occur under living. The organization's government has collected his crime data, but a lot of that information is compiled in the document. Which was not analyzed in a crime mapping and data statistics to make the most of the benefit. The geographic information and data on crime, that will be displayed on a digital map and analyzed, such as the crime scene, the date and time of the crime, frequency of crime, continuity. As well as trends of crime current digital maps. The geographic information system (GIS) has to popular and widely used to help with crime analysis. In which crime can occur, it is necessary to have the area or location where the crime occurred. for example (home, school, or workplace) the area or location where this crime was taken consider, study and understand crime and guidelines for prevention. Crime mapping relates to the concept of levels of spatial analysis of crime. It explains crime at different levels. Crime mapping and statistical modeling is the most important role in the use of geospatial such as planning, tracking and updates, and staff assistance systems. Maps convey powerful messages to their readers, most of whom are not know the technicalities of crime mapping. The depicted in isoline maps implies that a center of high-crime activity exists, and criminal activity is gradually diminished when officials apply it to the current work. We interest in the concrete environment because if considering the city on spatial grounds, the causes of each type of crime will occur in a different physical environment of the city. It depends on the environment in the area such as building density, the time of the incident, and the operation of the police, both in the police service radius and the service radius of the police station. By the physical environment factors of the city as mentioned above, criminal cases are created in different frequency and severity in each area. Therefore, this paper focuses on the crime analysis using the kernel density estimation and two-step floating catchment area (2SFCA). The method divide into 2 parts, The crime mapping enables the understanding of crime phenomena in three province areas. It uses the kernel density estimation (KDE), and then to detect service support zone was identified to demand and supply area, by two-step floating catchment area method (2SFCA). The analysis and display have results included an application of the Geographic Information System (GIS) supplementary to the discussion. GIS technology helps to analyzed information, such as types of crime by location, the location of victim service organizations, and their geographic service areas. This chapter examines four types of crime theories in greater detail: place (point) theories; street (line) theories; area (polygon) theories; and repeat victim theories, which can operate on point, line, or polygon level. These theories describe the levels of hot spots and how these levels can be depicted on maps. The kernel density estimation and two-step floating catchment area of criminal cases in the 3 provinces uses Euclidean distance and grid space. It is suitable for the geometry of homogeneous space, which seeks to use the geometry of flat twodimensional map spaces. It is found that the pattern of the spatial distribution of crime cases classified by crime type has different forms of crime depending on the circumstances of the crime, Such as urban areas, the market area, etc. As for the distribution of cases that occur during the daytime, the pattern of the cases is different from the night time. Therefore, CCTV should be installed in areas with high risk and should increase. Frequency cycle for checking the area following the time of the high risk of crime. And should arrange the period for the area inspection to be tighter. Which may divide the examination time into 4 hours and increase the frequency of examination in high-risk areas. This mapping can be used to examine the availability of basic services and the sufficiency of services groups. It can visually display multiple funding sources in a geographic area to help in a fair distribution of resources. It can be extremely useful in developing a strategic program for the maintenance and development of victim services.
Burapha University. Library
Address: CHONBURI
Email: buulibrary@buu.ac.th
Name: Hong Shu
Role: Principal advisor
Created: 2020
Modified: 2022-05-30
Issued: 2022-05-30
วิทยานิพนธ์/Thesis
application/pdf
CallNumber: Th 364 Na281K
eng
DegreeName: Master of Science
Descipline: Geoinformatics
©copyrights Burapha University
RightsAccess:
ลำดับที่.ชื่อแฟ้มข้อมูล ขนาดแฟ้มข้อมูลจำนวนเข้าถึง วัน-เวลาเข้าถึงล่าสุด
1 61910089.pdf 2.01 MB2 2023-03-06 21:45:25
ใช้เวลา
0.029512 วินาที

Nattaporn Soontorn
Title Contributor Type
The kernel density estimation for crime analysis : a case study in three provinces southern of Thailand
มหาวิทยาลัยบูรพา
Nattaporn Soontorn
Hong Shu
วิทยานิพนธ์/Thesis
Hong Shu
Title Creator Type and Date Create
The kernel density estimation for crime analysis : a case study in three provinces southern of Thailand
มหาวิทยาลัยบูรพา
Hong Shu
Nattaporn Soontorn
วิทยานิพนธ์/Thesis
Analyzing spatial accessibility to the government Hospitals in Chonburi, Thailand
มหาวิทยาลัยบูรพา
Hong Shu

วิทยานิพนธ์/Thesis
Tree height estimation using field measurement and Low-Cost unmanned Aerial Vehicle (UAV) at Phnom Kulen national Park of Cambodia
มหาวิทยาลัยบูรพา
Hong Shu;Kitsanai Charoenjit;Haoran Zhang
Ly Mot
วิทยานิพนธ์/Thesis
Spatial analysis of crime in three provinces, southern Thailand : Hotspot, factors, and accessibility
มหาวิทยาลัยบูรพา
Hong Shu;Phattraporn Soytong
Pongsakorn Srinarong
วิทยานิพนธ์/Thesis
A correlation study for determination risk area of dengue fever and dengue hemorrhagic fever : a case study of Sisaket province, Thailand
มหาวิทยาลัยบูรพา
Hong Shu;Phattraporn Soytong
Nutchanon Chantapoh
วิทยานิพนธ์/Thesis
Image classification and change analysis of Ca-Markov for land use/land cover of BangLamung District, Pattaya City, Chon Buri Province, Thailand
มหาวิทยาลัยบูรพา
Hong Shu;Tanita Suepa;Kitsanai Charoenjit
Bawonluck Wiboonwatchara
วิทยานิพนธ์/Thesis
Copyright 2000 - 2026 ThaiLIS Digital Collection Working Group. All rights reserved.
ThaiLIS is Thailand Library Integrated System
สนับสนุนโดย สำนักงานบริหารเทคโนโลยีสารสนเทศเพื่อพัฒนาการศึกษา
กระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม
328 ถ.ศรีอยุธยา แขวง ทุ่งพญาไท เขต ราชเทวี กรุงเทพ 10400 โทร. โทร. 02-232-4000
กำลัง ออน์ไลน์
ภายในเครือข่าย ThaiLIS จำนวน 5
ภายนอกเครือข่าย ThaiLIS จำนวน 2,519
รวม 2,524 คน

More info..
นอก ThaiLIS = 236,316 ครั้ง
มหาวิทยาลัยราชภัฏ = 631 ครั้ง
มหาวิทยาลัยสังกัดทบวงเดิม = 429 ครั้ง
มหาวิทยาลัยเอกชน = 169 ครั้ง
มหาวิทยาลัยเทคโนโลยีราชมงคล = 53 ครั้ง
หน่วยงานอื่น = 7 ครั้ง
สถาบันพระบรมราชชนก = 6 ครั้ง
มหาวิทยาลัยสงฆ์ = 2 ครั้ง
รวม 237,613 ครั้ง
Database server :
Version 2.5 Last update 1-06-2018
Power By SUSE PHP MySQL IndexData Mambo Bootstrap
มีปัญหาในการใช้งานติดต่อผ่านระบบ UniNetHelp


Server : 8.199.134
Client : Not ThaiLIS Member
From IP : 216.73.216.181