แจ้งเอกสารไม่ครบถ้วน, ไม่ตรงกับชื่อเรื่อง หรือมีข้อผิดพลาดเกี่ยวกับเอกสาร ติดต่อที่นี่ ==>
หากไม่มีอีเมลผู้รับให้กรอก thailis-noc@uni.net.th ติดต่อเจ้าหน้าที่เจ้าของเอกสาร กรณีเอกสารไม่ครบหรือไม่ตรง

Techniques for audio and speech information hiding based on singular-spectrum analysis and applications in service sector

keyword: Audio and speech information hiding
LCSH: Sound -- Recording and reproducing -- Digital techniques
; Singular-spectrum analysis
LCSH: Digital watermarking
; Semi-fragile watermarking
LCSH: Psychoacoustics
; Tampering detection
; High-capacity information carrier
; Differential evolution
; Psychoacoustic model
Abstract: The rapid growth of the Internet and the rise of information distribution systems have posed social concerns and business demands for applications such as broadcast monitoring, owner identification, proof of ownership, transaction tracking, tampering detection, copy control, and information carrier. Audio and speech information hiding (ASIH) has been suggested as a solution for these demands. The information hiding is a scheme of making information unnoticeable. In general, there are five required properties for ASIH. (1) Inaudibility or transparency: this is a property that the hidden information does not cause any perceptual difference in hearing between a host signal and that signal embedded by the hidden information. (2) Robustness and fragility: the hidden information is said to be robust against an attack if it could be correctly extracted after that attack was performed to the signal carrying that information. Otherwise, it is said to be fragile to the attack. (3) Blindness: this property refers to an ability of correctly extracting the hidden information embedded into a watermarked signal by using only the watermarked signal. (4) Confidentiality: this property requires that, even though an unauthorized person knows there is information embedded into a signal, he or she cannot access the information. (5) Capacity: this terminology refers to the amount of information that can be embedded into a host signal. The first challenge of ASIH is that, normally, these required properties conflict with each other. Another fact that poses another challenge to this work is that the human auditory system is extremely sensitive. The last challenge is from an application usage viewpoint, i.e., for some applications, such as ownership protection or identification, there is motivation for attackers to remove or destroy the hidden information, and it is not easy to cope with all possible attacks. This research aims to explore ASIH that can satisfy all requirements, especially the conflict between inaudibility and robustness. Based on literature reviews, ASIH based on singular value decomposition (SVD) is one of the robust techniques. All SVD-based schemes embed information by slightly changing the singular values of a matrix representing a host signal. Since SVD-based analysis is a data-driven technique, all SVD-based ASIH schemes treat an audio or speech signal as a meaningless time-series and do not take any audio or speech features nor human auditory perception into consideration. As a result, all published embedding rules used in the SVD-based schemes are uninformed. The disadvantage of these uninformed embedding rules is that it is difficult, if not impossible, to improve the overall performance further by taking some characteristics of an input signal or of the human auditory system into account. As a consequence, the SVD-based schemes cannot resolve the conflicting problem between the audibility and robustness for some input signals. The motivation in this work is to resolve the above-mentioned problems by trying to address the physical meaning of a singular value so that when the advantages of the SVD-based technique combine with some informed embedding rules, we can overcome the problem of conflicting requirements. In this work, we propose a framework based on the singular-spectrum analysis (SSA), which is closely related to the SVD. We show that singular values can have the physical meaning in SSA. Hence, the SSA is adopted to exploit the advantages of the SVD-based technique, and, at the same time, it provides us the framework in which an embedding rule can be informed. We propose the basic structure of ASIH based on SSA. The test results showed that the proposed SSA-based ASIH satisfied both inaudibility and robustness criteria. However, the scheme could not deal with some input signals and result in poor sound quality or low watermark-extraction precision. We improve the scheme further by developing two embedding parameter selection methods: the one that is based on the differential evolution and the one based on the psychoacoustic model. Then, the test results were improved considerably. In this work, we demonstrate that the proposed SSA-based structure is flexible enough to be adapted for fragile or semi-fragile watermarking. Thus, we propose the semi-fragile watermarking schemes. The test results showed that the schemes are robust against various malicious attacks but fragile to non-malicious ones. Finally, we apply the SSA-based ASIH for two potential service applications: tampering detection and information carrier. For the tampering detection, the proposed scheme could detect, locate, and identify the tampered area correctly. For the information carrier application, our proposed scheme could achieve the embedding capacity of 320 bps without sacrificing the sound quality
Thammasat University. Thammasat University Library
Address: BANGKOK
Email: preserv@tu.ac.th
Role: advisor
Role: co-advisor
Created: 2016
Modified: 2021-07-16
Issued: 2021-07-16
วิทยานิพนธ์/Thesis
application/pdf
eng
©copyrights Thammasat University
RightsAccess:
ลำดับที่.ชื่อแฟ้มข้อมูล ขนาดแฟ้มข้อมูลจำนวนเข้าถึง วัน-เวลาเข้าถึงล่าสุด
1 3296jessada.pdf 14.78 MB
ใช้เวลา
0.021542 วินาที

Jessada Karnjana
Title Contributor Type
Techniques for audio and speech information hiding based on singular-spectrum analysis and applications in service sector
มหาวิทยาลัยธรรมศาสตร์
Jessada Karnjana
Pakinee Aimmanee
Unoki, Masashi
วิทยานิพนธ์/Thesis
Pakinee Aimmanee
Title Creator Type and Date Create
Iterative nick thresholding region growing for hemorrhage and exudate detection and segmentation to prescreen diabetic retinopathy
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee
Patsaphon Chandhakanond
วิทยานิพนธ์/Thesis
A novel approach on candidate generation for automatic English to Chinese medical term translation using data mining with web data
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee;Cholwich Nattee
Qu, Jian
วิทยานิพนธ์/Thesis
The automated system for glaucoma and diabetic retinopathy pre-screening in mobile phone retinal images
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee
Thayanee Ruennark
วิทยานิพนธ์/Thesis
Semantic object classification using a similarity-based instance checking algorithm in description logics
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee;Boontawee Santisrivaraporn
Suwan Tongphu
วิทยานิพนธ์/Thesis
OD localization using vessel based image orientation independent approaches
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee
Bodeetorn Sutcharit
วิทยานิพนธ์/Thesis
Optic disk localization and segmentation in retinal images using vessel based feature projection approaches and active contour model
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee
Khaing, Tin Tin
วิทยานิพนธ์/Thesis
Techniques for audio and speech information hiding based on singular-spectrum analysis and applications in service sector
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee;Unoki, Masashi
Jessada Karnjana
วิทยานิพนธ์/Thesis
Optic disk detection and segmentation approaches based on vessel network
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee;Makhanov, Stanislav S.
Nittaya Muangnak
วิทยานิพนธ์/Thesis
Optic disc localization using vessel clustering and rotational 2D vessel projection
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee;Makhanov, Stanislav S.
Pongsate Tangseng
วิทยานิพนธ์/Thesis
In-car speech recognition for retrieving traffic information from internet
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee;Chowich Nattee
Surasak Boonkla
วิทยานิพนธ์/Thesis
Landslide detection from satellite imagery using change detection and machine learning
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee
Asadang Tanatipuknon
วิทยานิพนธ์/Thesis
Optic disc segmentation applied to retinal images with glaucoma, diabetic retinopathy, and optic disc edema
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee;Haneishi, Hideaki
Khaing, Tin Tin
วิทยานิพนธ์/Thesis
Techniques for manipulation detection in speech signal using machine learning and acoustic signal processing
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee;Unoki, Masashi
Kasorn Galajit
วิทยานิพนธ์/Thesis
Automatic optic disc segmentation for edema classification and severity grading
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee
Naing, Seint Lei
วิทยานิพนธ์/Thesis
Pre-screening of healthy retinal using geometrical features extracted from OCT retinal images
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee;Somrudee Deepaisarn
Hussain, Mohamed Shahud
วิทยานิพนธ์/Thesis
Automatic localization of retinal neovascularization in optical coherence tomography angiography images using feature maps analysis
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee
Tun, Yar Zar
วิทยานิพนธ์/Thesis
Spoof detection using voice contribution on LFCC features and ResNet-34
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee
Mon, Khaing Zar
วิทยานิพนธ์/Thesis
Unoki, Masashi
Title Creator Type and Date Create
Techniques for audio and speech information hiding based on singular-spectrum analysis and applications in service sector
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee;Unoki, Masashi
Jessada Karnjana
วิทยานิพนธ์/Thesis
Blind estimation of room acoustic parameters and the performance improvement based on information fusion using Dempster-Shafer theory
มหาวิทยาลัยธรรมศาสตร์
Waree Kongprawechnon;Unoki, Masashi
Suradej Duangpummet
วิทยานิพนธ์/Thesis
Techniques for manipulation detection in speech signal using machine learning and acoustic signal processing
มหาวิทยาลัยธรรมศาสตร์
Pakinee Aimmanee;Unoki, Masashi
Kasorn Galajit
วิทยานิพนธ์/Thesis
Copyright 2000 - 2025 ThaiLIS Digital Collection Working Group. All rights reserved.
ThaiLIS is Thailand Library Integrated System
สนับสนุนโดย สำนักงานบริหารเทคโนโลยีสารสนเทศเพื่อพัฒนาการศึกษา
กระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม
328 ถ.ศรีอยุธยา แขวง ทุ่งพญาไท เขต ราชเทวี กรุงเทพ 10400 โทร. โทร. 02-232-4000
กำลัง ออน์ไลน์
ภายในเครือข่าย ThaiLIS จำนวน 1
ภายนอกเครือข่าย ThaiLIS จำนวน 3,483
รวม 3,484 คน

More info..
นอก ThaiLIS = 79,210 ครั้ง
มหาวิทยาลัยราชภัฏ = 29 ครั้ง
มหาวิทยาลัยเทคโนโลยีราชมงคล = 17 ครั้ง
มหาวิทยาลัยสังกัดทบวงเดิม = 16 ครั้ง
รวม 79,272 ครั้ง
Database server :
Version 2.5 Last update 1-06-2018
Power By SUSE PHP MySQL IndexData Mambo Bootstrap
มีปัญหาในการใช้งานติดต่อผ่านระบบ UniNetHelp


Server : 8.199.134
Client : Not ThaiLIS Member
From IP : 216.73.216.124