Abstract:
This research used V2O5, WO3, and TiO2 (as catalyst support) as benzene oxidation catalysts. The catalysts were prepared by wet impregnation method. The amount of V2O5 was fixed at a concentration around 3 %wt and the amount of WO3 was varied between 5-7 %wt. Metal loading, BET surface area, and crystal structure were determined using ICP, Single point BET, and XRD, respectively. The total amount of acidic site was measured using pyridine adsorption technique while acid site strength was determined using NH3-TPD technique. Catalytic performance for benzene oxidation and Selective Catalytic Reduction (SCR) was evaluated separately and simultaneously in the reaction temperature range 120-450°C. The experimental results show that percentage of benzene removal increases with reaction temperature. The SCR activities of 3V5W and 3V6W increase with reaction temperature until reaching a maximum before dropping. On the contrary, 3V7W is quite inactive for both benzene oxidation and SCR reaction. In addition, each catalyst has optimum working temperature i.e., 300-350°C for 3V5W and 300-400°C for 3V6W.