Abstract:
This research studied the formation of N2O and SO3 over vanadium-based SCR catalysts during the selective catalytic reduction of NO by NH3. The TiO2 support was prepared by sol-gel method. The vanadium, tungsten and molybdenum were loaded by incipient wetness impregnation method. The catalysts were characterized by N2 physisorption, NH3-TPD, ICP-OES, XRD and FT-IR techniques. The catalytic activity testing was carried out in the temperature range 120-450°C. The simulated exhaust gas has the same composition as the exhaust gas of a gas turbine power plant having O2 and H2O content as high as 15 %vol. The results showed that N2O formation of V2O5/TiO2 catalyst during SCR causes from the oxidation of NH3. The N2O formation of WO3/TiO2, MoO3/TiO2, and V2O5-MoO3/TiO2 catalyst causes from the reaction between NO and NH3, while N2O formation of V2O5-WO3/TiO2 causes from both the oxidation of NH3 and the reaction between NO and NH3. The formation of SO3 during the SCR does not occur.