Abstract:
This thesis studied and simulated the process of time dependent film boiling on the surface of a sphere in order to calculate the heat fluxes on the surface. A computer program was developed to calculate the temperatures inside a sphere and to calculate the heat fluxes. The heat fluxes were then used to obtain the average convective heat transfer coefficient for time dependent film boiling. The proposed model was tested against the data obtained from the experiments conducted with a 24.5 millimeter radius Stainless steel sphere. The initial temperatures of 200, 300, 400 and 500 degree Celsius were used in the experiments. Due to the asymmetry of temperature distribution, the new boundary condition based on the continuity of the heat fluxes across the center point was developed. This allowed the calculation of the temperature at the points around the center of the sphere to be possible. From the obtained results, the declining patterns for the averaged temperature of a sphere over time were found to be similar to each other. The heat fluxes were initially high for a brief period and then gradually declined due to the formation of the vapor film, which worked as an insulator between the water and the sphere. Over a period of time, the heat fluxes increased again because of the film separation.